These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36630608)

  • 1. Divide-and-Conquer Linear-Scaling Quantum Chemical Computations.
    Nakai H; Kobayashi M; Yoshikawa T; Seino J; Ikabata Y; Nishimura Y
    J Phys Chem A; 2023 Jan; 127(3):589-618. PubMed ID: 36630608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale excited-state calculation using dynamical polarizability evaluated by divide-and-conquer based coupled cluster linear response method.
    Yoshikawa T; Yoshihara J; Nakai H
    J Chem Phys; 2020 Jan; 152(2):024102. PubMed ID: 31941302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconsidering an analytical gradient expression within a divide-and-conquer self-consistent field approach: exact formula and its approximate treatment.
    Kobayashi M; Kunisada T; Akama T; Sakura D; Nakai H
    J Chem Phys; 2011 Jan; 134(3):034105. PubMed ID: 21261328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How does it become possible to treat delocalized and/or open-shell systems in fragmentation-based linear-scaling electronic structure calculations? The case of the divide-and-conquer method.
    Kobayashi M; Nakai H
    Phys Chem Chem Phys; 2012 Jun; 14(21):7629-39. PubMed ID: 22513877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy-based automatic determination of buffer region in the divide-and-conquer second-order Møller-Plesset perturbation theory.
    Fujimori T; Kobayashi M; Taketsugu T
    J Comput Chem; 2021 Apr; 42(9):620-629. PubMed ID: 33534916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic hyperpolarizability calculations of large systems: the linear-scaling divide-and-conquer approach.
    Kobayashi M; Touma T; Nakai H
    J Chem Phys; 2012 Feb; 136(8):084108. PubMed ID: 22380033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPU-Accelerated Large-Scale Excited-State Simulation Based on Divide-and-Conquer Time-Dependent Density-Functional Tight-Binding.
    Yoshikawa T; Komoto N; Nishimura Y; Nakai H
    J Comput Chem; 2019 Dec; 40(31):2778-2786. PubMed ID: 31441083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.
    Nishizawa H; Nishimura Y; Kobayashi M; Irle S; Nakai H
    J Comput Chem; 2016 Aug; 37(21):1983-92. PubMed ID: 27317328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An effective energy gradient expression for divide-and-conquer second-order Møller-Plesset perturbation theory.
    Kobayashi M; Nakai H
    J Chem Phys; 2013 Jan; 138(4):044102. PubMed ID: 23387563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitation configuration analysis for divide-and-conquer excited-state calculation method using dynamical polarizability.
    Nishimura R; Yoshikawa T; Sakata K; Nakai H
    J Chem Phys; 2024 Jun; 160(24):. PubMed ID: 38913842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an excited-state calculation method for large systems using dynamical polarizability: A divide-and-conquer approach at the time-dependent density functional level.
    Nakai H; Yoshikawa T
    J Chem Phys; 2017 Mar; 146(12):124123. PubMed ID: 28388124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Local unitary transformation method toward practical electron correlation calculations with scalar relativistic effect in large-scale molecules.
    Seino J; Nakai H
    J Chem Phys; 2013 Jul; 139(3):034109. PubMed ID: 23883012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divide-and-conquer-based linear-scaling approach for traditional and renormalized coupled cluster methods with single, double, and noniterative triple excitations.
    Kobayashi M; Nakai H
    J Chem Phys; 2009 Sep; 131(11):114108. PubMed ID: 19778101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fragment quantum mechanical calculation of proteins and its applications.
    He X; Zhu T; Wang X; Liu J; Zhang JZ
    Acc Chem Res; 2014 Sep; 47(9):2748-57. PubMed ID: 24851673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated error control in divide-and-conquer self-consistent field calculations.
    Kobayashi M; Fujimori T; Taketsugu T
    J Comput Chem; 2018 Jun; 39(15):909-916. PubMed ID: 29399822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative linear-scaling methodology for the second-order Møller-Plesset perturbation calculation based on the divide-and-conquer method.
    Kobayashi M; Imamura Y; Nakai H
    J Chem Phys; 2007 Aug; 127(7):074103. PubMed ID: 17718602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations.
    Shimojo F; Hattori S; Kalia RK; Kunaseth M; Mou W; Nakano A; Nomura K; Ohmura S; Rajak P; Shimamura K; Vashishta P
    J Chem Phys; 2014 May; 140(18):18A529. PubMed ID: 24832337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear-scaling self-consistent field calculations based on divide-and-conquer method using resolution-of-identity approximation on graphical processing units.
    Yoshikawa T; Nakai H
    J Comput Chem; 2015 Jan; 36(3):164-70. PubMed ID: 25392975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of divide-and-conquer method including Hartree-Fock exchange interaction.
    Akama T; Kobayashi M; Nakai H
    J Comput Chem; 2007 Sep; 28(12):2003-12. PubMed ID: 17455367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Divide-and-Conquer Density-Functional Tight-Binding Method for Theoretical Research on Li-Ion Battery.
    Chou CP; Sakti AW; Nishimura Y; Nakai H
    Chem Rec; 2019 Apr; 19(4):746-757. PubMed ID: 30462370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.