These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36630702)

  • 1. Novel Lennard-Jones Parameters for Cysteine and Selenocysteine in the AMBER Force Field.
    Pedron FN; Messias A; Zeida A; Roitberg AE; Estrin DA
    J Chem Inf Model; 2023 Jan; 63(2):595-604. PubMed ID: 36630702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upgrading and Validation of the AMBER Force Field for Histidine and Cysteine Zinc(II)-Binding Residues in Sites with Four Protein Ligands.
    Macchiagodena M; Pagliai M; Andreini C; Rosato A; Procacci P
    J Chem Inf Model; 2019 Sep; 59(9):3803-3816. PubMed ID: 31385702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lennard-Jones parameters for the combined QM/MM method using the B3LYP/6-31G*/AMBER potential.
    Freindorf M; Shao Y; Furlani TR; Kong J
    J Comput Chem; 2005 Sep; 26(12):1270-8. PubMed ID: 15965971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hydration structure of methylthiolate from QM/MM molecular dynamics.
    Awoonor-Williams E; Rowley CN
    J Chem Phys; 2018 Jul; 149(4):045103. PubMed ID: 30068187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force Field Benchmark of Amino Acids. 3. Hydration with Scaled Lennard-Jones Interactions.
    Qiu Y; Shan W; Zhang H
    J Chem Inf Model; 2021 Jul; 61(7):3571-3582. PubMed ID: 34185520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Additive CHARMM36 Force Field for Nonstandard Amino Acids.
    Croitoru A; Park SJ; Kumar A; Lee J; Im W; MacKerell AD; Aleksandrov A
    J Chem Theory Comput; 2021 Jun; 17(6):3554-3570. PubMed ID: 34009984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recalibrating the calcium trap in amino acid carboxyl groups
    Koskamp JA; Ruiz Hernandez SE; de Leeuw NH; Wolthers M
    Phys Chem Chem Phys; 2023 Jan; 25(2):1220-1235. PubMed ID: 36524712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chalcogen-analogs of amino acids. Their use in X-ray crystallographic and folding studies of peptides and proteins.
    Besse D; Budisa N; Karnbrock W; Minks C; Musiol HJ; Pegoraro S; Siedler F; Weyher E; Moroder L
    Biol Chem; 1997; 378(3-4):211-8. PubMed ID: 9165073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of antitumor coinage metal-based N-heterocyclic carbene complexes with cysteine and selenocysteine protein sites.
    Tolbatov I; Marzo T; Coletti C; La Mendola D; Storchi L; Re N; Marrone A
    J Inorg Biochem; 2021 Oct; 223():111533. PubMed ID: 34273714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Derivation of fixed partial charges for amino acids accommodating a specific water model and implicit polarization.
    Cerutti DS; Rice JE; Swope WC; Case DA
    J Phys Chem B; 2013 Feb; 117(8):2328-38. PubMed ID: 23379664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of molecular force field parameters for peptides including isomerized amino acids.
    Oda A; Nakayoshi T; Fukuyoshi S; Kurimoto E; Yamaotsu N; Hirono S; Takahashi O
    Chirality; 2018 Apr; 30(4):332-341. PubMed ID: 29393985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional diversity of cysteine residues in proteins and unique features of catalytic redox-active cysteines in thiol oxidoreductases.
    Fomenko DE; Marino SM; Gladyshev VN
    Mol Cells; 2008 Sep; 26(3):228-35. PubMed ID: 18648218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and Validation of AMBER-FB15-Compatible Force Field Parameters for Phosphorylated Amino Acids.
    Stoppelman JP; Ng TT; Nerenberg PS; Wang LP
    J Phys Chem B; 2021 Nov; 125(43):11927-11942. PubMed ID: 34668708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing force fields when experimental data is sparse: AMBER/GAFF-compatible parameters for inorganic and alkyl oxoanions.
    Kashefolgheta S; Vila Verde A
    Phys Chem Chem Phys; 2017 Aug; 19(31):20593-20607. PubMed ID: 28731091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple physics-based analytical formulas for the potentials of mean force for the interaction of amino acid side chains in water. 2. Tests with simple spherical systems.
    Makowski M; Liwo A; Maksimiak K; Makowska J; Scheraga HA
    J Phys Chem B; 2007 Mar; 111(11):2917-24. PubMed ID: 17388417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Lennard-Jones and Buckingham Potentials for Lanthanoid Ions in Water.
    Migliorati V; Serva A; Terenzio FM; D'Angelo P
    Inorg Chem; 2017 Jun; 56(11):6214-6224. PubMed ID: 28493693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic properties of selenophosphate synthetases: comparison of the selenocysteine-containing enzyme from Haemophilus influenzae with the corresponding cysteine-containing enzyme from Escherichia coli.
    Lacourciere GM; Stadtman TC
    Proc Natl Acad Sci U S A; 1999 Jan; 96(1):44-8. PubMed ID: 9874769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The SAAP force field: development of the single amino acid potentials for 20 proteinogenic amino acids and Monte Carlo molecular simulation for short peptides.
    Iwaoka M; Kimura N; Yosida D; Minezaki T
    J Comput Chem; 2009 Oct; 30(13):2039-55. PubMed ID: 19140140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of electrostatics in TrxR electron transfer mechanism: A computational approach.
    Teixeira VH; Capacho AS; Machuqueiro M
    Proteins; 2016 Dec; 84(12):1836-1843. PubMed ID: 27667125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selenocysteine.
    Stadtman TC
    Annu Rev Biochem; 1996; 65():83-100. PubMed ID: 8811175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.