These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36630770)

  • 1. Bacterial mobility and motility in porous media mimicked by microspheres.
    Shrestha D; Ou J; Rogers A; Jereb A; Okyere D; Chen J; Wang Y
    Colloids Surf B Biointerfaces; 2023 Feb; 222():113128. PubMed ID: 36630770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confinement and activity regulate bacterial motion in porous media.
    Bhattacharjee T; Datta SS
    Soft Matter; 2019 Dec; 15(48):9920-9930. PubMed ID: 31750508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of confined geometries on hopping and trapping of motile bacteria in porous media.
    Perez LJ; Bhattacharjee T; Datta SS; Parashar R; Sund NL
    Phys Rev E; 2021 Jan; 103(1-1):012611. PubMed ID: 33601519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemotactic migration of bacteria in porous media.
    Bhattacharjee T; Amchin DB; Ott JA; Kratz F; Datta SS
    Biophys J; 2021 Aug; 120(16):3483-3497. PubMed ID: 34022238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media.
    Bai H; Cochet N; Pauss A; Lamy E
    Colloids Surf B Biointerfaces; 2016 Mar; 139():148-55. PubMed ID: 26705829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial hopping and trapping in porous media.
    Bhattacharjee T; Datta SS
    Nat Commun; 2019 May; 10(1):2075. PubMed ID: 31061418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface association of motile bacteria at granular porous media interfaces.
    Kusy K; Ford RM
    Environ Sci Technol; 2009 May; 43(10):3712-9. PubMed ID: 19544878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore-scale observation of microsphere deposition at grain-to-grain contacts over assemblage-scale porous media domains using X-ray microtomography.
    Li X; Lin CL; Miller JD; Johnson WP
    Environ Sci Technol; 2006 Jun; 40(12):3762-8. PubMed ID: 16830539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacteria transport and deposition in an unsaturated aggregated porous medium with dual porosity.
    Bai H; Lamy E
    Environ Sci Pollut Res Int; 2021 Apr; 28(15):18963-18976. PubMed ID: 32342416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition from active motion to anomalous diffusion for Bacillus subtilis confined in hydrogel matrices.
    Bassu G; Laurati M; Fratini E
    Colloids Surf B Biointerfaces; 2024 Apr; 236():113797. PubMed ID: 38431996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of bacterial random motility in a porous medium using magnetic resonance imaging and immunomagnetic labeling.
    Sherwood JL; Sung JC; Ford RM; Fernandez EJ; Maneval JE; Smith JA
    Environ Sci Technol; 2003 Feb; 37(4):781-5. PubMed ID: 12636279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium.
    Ren L; Xu J; Zhang Y; Zhou J; Chen D; Chang Z
    Int J Biol Macromol; 2019 Aug; 135():898-906. PubMed ID: 31170495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A geometric criterion for the optimal spreading of active polymers in porous media.
    Kurzthaler C; Mandal S; Bhattacharjee T; Löwen H; Datta SS; Stone HA
    Nat Commun; 2021 Dec; 12(1):7088. PubMed ID: 34873164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy Taxis toward Redox-Active Surfaces Decreases the Transport of Electroactive Bacteria in Saturated Porous Media.
    Liu L; Liu G; Zhou J; Jin R
    Environ Sci Technol; 2021 Apr; 55(8):5559-5568. PubMed ID: 33728915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore-scale quantification of colloid transport in saturated porous media.
    Smith J; Gao B; Funabashi H; Tran TN; Luo D; Ahner BA; Steenhuis TS; Hay AG; Walter MT
    Environ Sci Technol; 2008 Jan; 42(2):517-23. PubMed ID: 18284156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transverse mixing enhancement due to bacterial random motility in porous microfluidic devices.
    Singh R; Olson MS
    Environ Sci Technol; 2011 Oct; 45(20):8780-7. PubMed ID: 21877703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Antimicrobial Efficacy of Bimetallic Porous CuO Microspheres Decorated with Ag Nanoparticles.
    Chen X; Ku S; Weibel JA; Ximenes E; Liu X; Ladisch M; Garimella SV
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39165-39173. PubMed ID: 29059530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pore-scale investigation of micron-size polyacrylamide elastic microspheres (MPEMs) transport and retention in saturated porous media.
    Yao C; Lei G; Cathles LM; Steenhuis TS
    Environ Sci Technol; 2014 May; 48(9):5329-35. PubMed ID: 24749927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous calcium phosphate glass microspheres for orthobiologic applications.
    Hossain KMZ; Patel U; Kennedy AR; Macri-Pellizzeri L; Sottile V; Grant DM; Scammell BE; Ahmed I
    Acta Biomater; 2018 May; 72():396-406. PubMed ID: 29604438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature.
    Qutachi O; Vetsch JR; Gill D; Cox H; Scurr DJ; Hofmann S; Müller R; Quirk RA; Shakesheff KM; Rahman CV
    Acta Biomater; 2014 Dec; 10(12):5090-5098. PubMed ID: 25152354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.