These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 36630961)

  • 1. The centrality of population-level factors to network computation is demonstrated by a versatile approach for training spiking networks.
    DePasquale B; Sussillo D; Abbott LF; Churchland MM
    Neuron; 2023 Mar; 111(5):631-649.e10. PubMed ID: 36630961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Constructing Precisely Computing Networks with Biophysical Spiking Neurons.
    Schwemmer MA; Fairhall AL; Denéve S; Shea-Brown ET
    J Neurosci; 2015 Jul; 35(28):10112-34. PubMed ID: 26180189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Markovian event-based framework for stochastic spiking neural networks.
    Touboul JD; Faugeras OD
    J Comput Neurosci; 2011 Nov; 31(3):485-507. PubMed ID: 21499739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust computation with rhythmic spike patterns.
    Frady EP; Sommer FT
    Proc Natl Acad Sci U S A; 2019 Sep; 116(36):18050-18059. PubMed ID: 31431524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons.
    Buesing L; Bill J; Nessler B; Maass W
    PLoS Comput Biol; 2011 Nov; 7(11):e1002211. PubMed ID: 22096452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A complex-valued firing-rate model that approximates the dynamics of spiking networks.
    Schaffer ES; Ostojic S; Abbott LF
    PLoS Comput Biol; 2013 Oct; 9(10):e1003301. PubMed ID: 24204236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geometry of population activity in spiking networks with low-rank structure.
    Cimeša L; Ciric L; Ostojic S
    PLoS Comput Biol; 2023 Aug; 19(8):e1011315. PubMed ID: 37549194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning Universal Computations with Spikes.
    Thalmeier D; Uhlmann M; Kappen HJ; Memmesheimer RM
    PLoS Comput Biol; 2016 Jun; 12(6):e1004895. PubMed ID: 27309381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A network of spiking neurons that can represent interval timing: mean field analysis.
    Gavornik JP; Shouval HZ
    J Comput Neurosci; 2011 Apr; 30(2):501-13. PubMed ID: 20830512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting operational regimes of interest in recurrent neural networks.
    Ekelmans P; Kraynyukova N; Tchumatchenko T
    PLoS Comput Biol; 2023 May; 19(5):e1011097. PubMed ID: 37186668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Introduction to spiking neural networks: Information processing, learning and applications.
    Ponulak F; Kasinski A
    Acta Neurobiol Exp (Wars); 2011; 71(4):409-33. PubMed ID: 22237491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the sample complexity of learning for networks of spiking neurons with nonlinear synaptic interactions.
    Schmitt M
    IEEE Trans Neural Netw; 2004 Sep; 15(5):995-1001. PubMed ID: 15484876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning in neural networks by reinforcement of irregular spiking.
    Xie X; Seung HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041909. PubMed ID: 15169045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Firing rate dynamics in recurrent spiking neural networks with intrinsic and network heterogeneity.
    Ly C
    J Comput Neurosci; 2015 Dec; 39(3):311-27. PubMed ID: 26453404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spike frequency adaptation supports network computations on temporally dispersed information.
    Salaj D; Subramoney A; Kraisnikovic C; Bellec G; Legenstein R; Maass W
    Elife; 2021 Jul; 10():. PubMed ID: 34310281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spiking neural networks for cortical neuronal spike train decoding.
    Fang H; Wang Y; He J
    Neural Comput; 2010 Apr; 22(4):1060-85. PubMed ID: 19922291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of spiking neurons: between homogeneity and synchrony.
    Rangan AV; Young LS
    J Comput Neurosci; 2013 Jun; 34(3):433-60. PubMed ID: 23096934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bistability induces episodic spike communication by inhibitory neurons in neuronal networks.
    Kazantsev VB; Asatryan SY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031913. PubMed ID: 22060409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A solution to the learning dilemma for recurrent networks of spiking neurons.
    Bellec G; Scherr F; Subramoney A; Hajek E; Salaj D; Legenstein R; Maass W
    Nat Commun; 2020 Jul; 11(1):3625. PubMed ID: 32681001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A coarse-grained framework for spiking neuronal networks: between homogeneity and synchrony.
    Zhang J; Zhou D; Cai D; Rangan AV
    J Comput Neurosci; 2014 Aug; 37(1):81-104. PubMed ID: 24338105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.