BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 3663110)

  • 1. The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in the matrix volume induced by osmotic strength, valinomycin and Ca2+.
    Halestrap AP
    Biochem J; 1987 May; 244(1):159-64. PubMed ID: 3663110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intramitochondrial regulation of fatty acid beta-oxidation occurs between flavoprotein and ubiquinone. A role for changes in the matrix volume.
    Halestrap AP; Dunlop JL
    Biochem J; 1986 Nov; 239(3):559-65. PubMed ID: 3827814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liver mitochondrial pyrophosphate concentration is increased by Ca2+ and regulates the intramitochondrial volume and adenine nucleotide content.
    Davidson AM; Halestrap AP
    Biochem J; 1987 Sep; 246(3):715-23. PubMed ID: 2825649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase.
    Halestrap AP; Davidson AM
    Biochem J; 1990 May; 268(1):153-60. PubMed ID: 2160810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of calcium ions in the regulation of intramitochondrial metabolism. Effects of Na+, Mg2+ and ruthenium red on the Ca2+-stimulated oxidation of oxoglutarate and on pyruvate dehydrogenase activity in intact rat heart mitochondria.
    Denton RM; McCormack JG; Edgell NJ
    Biochem J; 1980 Jul; 190(1):107-17. PubMed ID: 6160850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH regulation of mitochondrial branch chain alpha-keto acid transport and oxidation in rat heart mitochondria.
    Hutson SM
    J Biol Chem; 1987 Jul; 262(20):9629-35. PubMed ID: 3597428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of rat brain mitochondria. Studies on the potassium ion-stimulated oxidation of pyruvate.
    Nicklas WJ; Clark JB; Williamson JR
    Biochem J; 1971 Jun; 123(1):83-95. PubMed ID: 5128666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria.
    Perevoshchikova IV; Quinlan CL; Orr AL; Gerencser AA; Brand MD
    Free Radic Biol Med; 2013 Aug; 61():298-309. PubMed ID: 23583329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3-Mercaptopropionic acid, a potent inhibitor of fatty acid oxidation in rat heart mitochondria.
    Sabbagh E; Cuebas D; Schulz H
    J Biol Chem; 1985 Jun; 260(12):7337-42. PubMed ID: 3997873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of the hormonal activation of respiration in isolated hepatocytes and its importance in the regulation of gluconeogenesis.
    Quinlan PT; Halestrap AP
    Biochem J; 1986 Jun; 236(3):789-800. PubMed ID: 3024626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents.
    Pryor HJ; Smyth JE; Quinlan PT; Halestrap AP
    Biochem J; 1987 Oct; 247(2):449-57. PubMed ID: 3426547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic pyrophosphate is located primarily in the mitochondria of the hepatocyte and increases in parallel with the decrease in light-scattering induced by gluconeogenic hormones, butyrate and ionophore A23187.
    Davidson AM; Halestrap AP
    Biochem J; 1988 Sep; 254(2):379-84. PubMed ID: 2845949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty Acid Oxidation and Mitochondrial Morphology Changes as Key Modulators of the Affinity for ADP in Rat Heart Mitochondria.
    Toleikis A; Trumbeckaite S; Liobikas J; Pauziene N; Kursvietiene L; Kopustinskiene DM
    Cells; 2020 Feb; 9(2):. PubMed ID: 32024170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyrophosphate metabolism in the perfused heart and isolated heart mitochondria and its role in regulation of mitochondrial function by calcium.
    Griffiths EJ; Halestrap AP
    Biochem J; 1993 Mar; 290 ( Pt 2)(Pt 2):489-95. PubMed ID: 8383966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of mitochondrial-matrix inorganic pyrophosphatase by physiological [Ca2+], and its role in the hormonal regulation of mitochondrial matrix volume.
    Davidson AM; Halestrap AP
    Biochem J; 1989 Mar; 258(3):817-21. PubMed ID: 2543362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acid oxidation in the heart.
    Grynberg A; Demaison L
    J Cardiovasc Pharmacol; 1996; 28 Suppl 1():S11-7. PubMed ID: 8891866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the intramitochondrial volume in hepatocytes without cell disruption and its elevation by hormones and valinomycin.
    Quinlan PT; Thomas AP; Armston AE; Halestrap AP
    Biochem J; 1983 Aug; 214(2):395-404. PubMed ID: 6412700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate specific effects of calcium on metabolism of rat heart mitochondria.
    Panov AV; Scaduto RC
    Am J Physiol; 1996 Apr; 270(4 Pt 2):H1398-406. PubMed ID: 8967382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chronic hypoxia on hepatic triacylglycerol concentration and mitochondrial fatty acid oxidizing capacity in liver and heart.
    Kinnula VL; Hassinen I
    Acta Physiol Scand; 1978 Jan; 102(1):64-73. PubMed ID: 626089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of citric acid cycle by calcium.
    Wan B; LaNoue KF; Cheung JY; Scaduto RC
    J Biol Chem; 1989 Aug; 264(23):13430-9. PubMed ID: 2503501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.