These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 3663110)

  • 21. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV; Scaduto RC
    Arch Biochem Biophys; 1995 Feb; 316(2):815-20. PubMed ID: 7864638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of micromolar concentrations of free calcium ions on the reduction of heart mitochondrial NAD(P) by 2-oxoglutarate.
    Hansford RG; Castro F
    Biochem J; 1981 Sep; 198(3):525-33. PubMed ID: 6275851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of fatty acids and ketones on the activity of pyruvate dehydrogenase in skeletal-muscle mitochondria.
    Ashour B; Hansford RG
    Biochem J; 1983 Sep; 214(3):725-36. PubMed ID: 6138029
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of Ca2+ ions in the regulation of intramitochondrial metabolism in rat heart. Evidence from studies with isolated mitochondria that adrenaline activates the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes by increasing the intramitochondrial concentration of Ca2+.
    McCormack JG; Denton RM
    Biochem J; 1984 Feb; 218(1):235-47. PubMed ID: 6424656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Mechanism of ischemic disorders of fatty acid oxidation in heart mitochondria].
    Toleĭkis AI
    Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR; 1985; 8(1):43-50. PubMed ID: 2988585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Oxidation of fatty acids in heart mitochondria of the ischemic myocardium].
    Toleĭkis AI; Bakshite LI; Prashkiavichius AK
    Vopr Med Khim; 1985; 31(6):41-6. PubMed ID: 4090385
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Palmitoyl carnitine: an endogenous promotor of calcium efflux from rat heart mitochondria.
    Baydoun AR; Markham A; Morgan RM; Sweetman AJ
    Biochem Pharmacol; 1988 Aug; 37(16):3103-7. PubMed ID: 2900007
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcium- and ADP-magnesium-induced respiratory uncoupling in isolated cardiac mitochondria: influence of cyclosporin A.
    Sentex E; Laurent A; Martine L; Gregoire S; Rochette L; Demaison L
    Mol Cell Biochem; 1999 Dec; 202(1-2):73-84. PubMed ID: 10705997
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of the mitochondrial matrix volume in vivo and in vitro. The role of calcium.
    Halestrap AP; Quinlan PT; Whipps DE; Armston AE
    Biochem J; 1986 Jun; 236(3):779-87. PubMed ID: 2431681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of glycine catabolism in rat liver mitochondria.
    Jois M; Ewart HS; Brosnan JT
    Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):435-9. PubMed ID: 1575688
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure-function relations between fatty acid oxidation and the mitochondrial inner-membrane--matrix region.
    Otto DA; Ontko JA
    Eur J Biochem; 1982 Dec; 129(2):479-85. PubMed ID: 7151811
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of calcium-induced workload transitions and fatty acid supply on myocardial substrate selection.
    Ala-Rämi A; Ylihautala M; Ingman P; Hassinen IE
    Metabolism; 2005 Mar; 54(3):410-20. PubMed ID: 15736122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload.
    Crompton M; Costi A
    Eur J Biochem; 1988 Dec; 178(2):489-501. PubMed ID: 2850179
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria.
    McCormack JG
    Biochem J; 1985 Nov; 231(3):581-95. PubMed ID: 3000355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts.
    el Alaoui-Talibi Z; Landormy S; Loireau A; Moravec J
    Am J Physiol; 1992 Apr; 262(4 Pt 2):H1068-74. PubMed ID: 1533101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developmental, nutritional, and hormonal regulation of tissue-specific expression of the genes encoding various acyl-CoA dehydrogenases and alpha-subunit of electron transfer flavoprotein in rat.
    Nagao M; Parimoo B; Tanaka K
    J Biol Chem; 1993 Nov; 268(32):24114-24. PubMed ID: 8226958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment.
    Papa S; Lorusso M; Izzo G; Capuano F
    Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of palmitoylcarnitine oxidation by pyruvate in rat heart mitochondria.
    Brosnan JT; Reid K
    Metabolism; 1985 Jun; 34(6):588-93. PubMed ID: 3999980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of propolis water solution on heart mitochondrial function.
    Majiene D; Trumbeckaite S; Savickas A; Toleikis A
    J Pharm Pharmacol; 2006 May; 58(5):709-13. PubMed ID: 16640841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidation-reduction midpoint potentials of mitochondrial flavoproteins and their intramitochondrial localization.
    Voltti H; Hassinen IE
    J Bioenerg Biomembr; 1978 Apr; 10(1-2):45-58. PubMed ID: 555461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.