These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3663116)

  • 1. Steady-state parameters of an enzyme from n.m.r. spin transfer with thermal variation.
    Kuchel PW
    Biochem J; 1987 May; 244(1):247-8. PubMed ID: 3663116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PH-dependence of the steady-state rate of a two-step enzymic reaction.
    Brocklehurst K; Dixon HB
    Biochem J; 1976 Apr; 155(1):61-70. PubMed ID: 7241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin-exchange NMR spectroscopy in studies of the kinetics of enzymes and membrane transport.
    Kuchel PW
    NMR Biomed; 1990 Jun; 3(3):102-19. PubMed ID: 2201390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The steady-state kinetics of isotope exchange for one substrate-one product enzymic reactions.
    Darvey IG
    Biochem J; 1973 Dec; 135(4):861-6. PubMed ID: 4778281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rate limitation within a single enzyme is directly related to enzyme intermediate levels.
    Kholodenko BN; Westerhoff HV; Brown GC
    FEBS Lett; 1994 Jul; 349(1):131-4. PubMed ID: 8045290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-substrate-one product enzymic reactions: the relationship between isotope-exchange kinetic, steady-state kinetic and equilibrium parameters.
    Darvey IG
    J Theor Biol; 1975 Jan; 49(1):201-11. PubMed ID: 1127945
    [No Abstract]   [Full Text] [Related]  

  • 7. A thermal-variation method for analysing the rate constants of the Michaelis--Menten mechanism.
    Lin SX; Chou KC; Wong JT
    Biochem J; 1982 Oct; 207(1):179-81. PubMed ID: 7181857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme kinetics for a two-step enzymic reaction with comparable initial enzyme-substrate ratios.
    Frenzen CL; Maini PK
    J Math Biol; 1988; 26(6):689-703. PubMed ID: 3230366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The analysis of rate limitation within enzymes: relations between flux control coefficients of rate constants and unidirectional rates, rate constants and thermodynamic parameters of single isolated enzymes.
    Brown GC; Cooper CE
    Biochem J; 1994 May; 300 ( Pt 1)(Pt 1):159-64. PubMed ID: 8198529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isomerization of the free enzyme versus induced fit: effects of steps involving induced fit that bypass enzyme isomerization on flux ratios and countertransport.
    Britton HG
    Biochem J; 1997 Jan; 321 ( Pt 1)(Pt 1):187-99. PubMed ID: 9003418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical thermodynamics and rapid-equilibrium enzyme kinetics.
    Alberty RA
    J Phys Chem B; 2010 Dec; 114(51):17003-12. PubMed ID: 21090637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control analysis applied to single enzymes: can an isolated enzyme have a unique rate-limiting step?
    Brown GC; Cooper CE
    Biochem J; 1993 Aug; 294 ( Pt 1)(Pt 1):87-94. PubMed ID: 8363590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of flux ratio measurements for the determination of the order of addition of substrates and products in enzyme reactions.
    Britton HG; Dann LG
    Biochem J; 1978 Jan; 169(1):29-37. PubMed ID: 629751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis.
    Mayr P; Nidetzky B
    Biochem J; 2002 Sep; 366(Pt 3):889-99. PubMed ID: 12003638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model for magnetic field effects on radical pair recombination in enzyme kinetics.
    Eichwald C; Walleczek J
    Biophys J; 1996 Aug; 71(2):623-31. PubMed ID: 8842202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General equation of steady-state enzyme kinetics using net rate constants and its applicaiton to the kinetic analysis of catalase reaction.
    Yomo T; Yamano T; Yamamoto K; Urabe I
    J Theor Biol; 1997 Oct; 188(3):301-12. PubMed ID: 9344734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generalized theory of the transition time for sequential enzyme reactions.
    Easterby JS
    Biochem J; 1981 Oct; 199(1):155-61. PubMed ID: 7337699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pH-dependence of second-order rate constants of enzyme modification may provide free-reactant pKa values.
    Brocklehurst K; Dixon HB
    Biochem J; 1977 Dec; 167(3):859-62. PubMed ID: 23769
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-based modeling in the teaching of steady-state enzyme kinetics.
    Czerlinski G; Sikorski J
    J Chem Inf Comput Sci; 1976 Feb; 16(1):30-3. PubMed ID: 765350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary optimization of enzyme kinetic parameters; effect of constraints.
    Klipp E; Heinrich R
    J Theor Biol; 1994 Dec; 171(3):309-23. PubMed ID: 7869733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.