These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3663116)

  • 21. A residence-time analysis of enzyme kinetics.
    Sines JJ; Hackney DD
    Biochem J; 1987 Apr; 243(1):159-64. PubMed ID: 3606569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The steady-state kinetics of isotope exchange at equilibrium: one substrate-one product enzymic mechanisms where two molecules of substrate or product are bound to an enzyme molecule.
    Darvey IG
    Biochem J; 1974 Dec; 143(3):783-4. PubMed ID: 4462758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Kinetic analysis of the possible effect of a constant magnetic field on the rate of enzymatic reactions].
    Vanag VK; Kuznetsov AN
    Biofizika; 1984; 29(1):23-9. PubMed ID: 6324883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fundamental relationships for the effect of proton dissociation equilibria on enzymic reaction steps.
    Pettersson G
    Eur J Biochem; 1987 Jul; 166(1):163-5. PubMed ID: 3036518
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How to derive flux control coefficients from the rate equations of classical enzyme kinetics.
    Südi J
    Math Biosci; 1996 Nov; 138(1):45-77. PubMed ID: 8942176
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR spin exchange kinetics at equilibrium in membrane transport and enzyme systems.
    Kuchel PW; Chapman BE
    J Theor Biol; 1983 Dec; 105(4):569-89. PubMed ID: 6672473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quasi-steady-state laws in enzyme kinetics.
    Li B; Shen Y; Li B
    J Phys Chem A; 2008 Mar; 112(11):2311-21. PubMed ID: 18303867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the estimation errors of K
    Stroberg W; Schnell S
    Biophys Chem; 2016 Dec; 219():17-27. PubMed ID: 27677118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of experimental isotope-exchange fluxes in reversible enzyme and membrane transport models, assessed by simultaneous computer simulation of unidirectional and net chemical rates.
    Plesner IW
    Biochem J; 1992 Aug; 286 ( Pt 1)(Pt 1):295-303. PubMed ID: 1325781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of Net Rate Constants from Enzyme Progress Curves without Curve Fitting.
    Ruszczycky MW; Liu HW
    Biochemistry; 2019 Dec; 58(49):4950-4956. PubMed ID: 31710808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An easy method for deriving steady-state rate equations.
    Waley SG
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):357-9. PubMed ID: 1530568
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Site-specific protonation kinetics of acidic side chains in proteins determined by pH-dependent carboxyl (13)C NMR relaxation.
    Wallerstein J; Weininger U; Khan MA; Linse S; Akke M
    J Am Chem Soc; 2015 Mar; 137(8):3093-101. PubMed ID: 25665463
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A probabilistic approach to compact steady-state kinetic equations for enzymic reactions.
    Malygin EG; Hattman S
    J Theor Biol; 2006 Oct; 242(3):627-33. PubMed ID: 16697416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of enzyme inhibitory mechanisms from steady-state kinetics.
    Fange D; Lovmar M; Pavlov MY; Ehrenberg M
    Biochimie; 2011 Sep; 93(9):1623-9. PubMed ID: 21689716
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distributed-in-space product formation in vivo: enzymic kinetics.
    Goresky CA; Bach GG; Schwab AJ
    Am J Physiol; 1993 Jun; 264(6 Pt 2):H2029-50. PubMed ID: 8322932
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The computerized derivation of rate equations for enzyme reactions on the basis of the pseudo-steady-state assumption and the rapid-equilibrium assumption.
    Ishikawa H; Maeda T; Hikita H; Miyatake K
    Biochem J; 1988 Apr; 251(1):175-81. PubMed ID: 3390151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Global analysis of the effects of temperature and denaturant on the folding and unfolding kinetics of the N-terminal domain of the protein L9.
    Kuhlman B; Luisi DL; Evans PA; Raleigh DP
    J Mol Biol; 1998 Dec; 284(5):1661-70. PubMed ID: 9878377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spin Saturation Transfer Difference NMR (SSTD NMR): A New Tool to Obtain Kinetic Parameters of Chemical Exchange Processes.
    Quirós MT; Macdonald C; Angulo J; Muñoz MP
    J Vis Exp; 2016 Nov; (117):. PubMed ID: 27911361
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control analysis of single enzyme sequences with abortive complexes and random substrate binding.
    Schulz AR; Südi J
    J Theor Biol; 1996 Oct; 182(3):397-403. PubMed ID: 8944173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzyme dynamics from NMR spectroscopy.
    Palmer AG
    Acc Chem Res; 2015 Feb; 48(2):457-65. PubMed ID: 25574774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.