These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36631407)

  • 1. AFP-MFL: accurate identification of antifungal peptides using multi-view feature learning.
    Fang Y; Xu F; Wei L; Jiang Y; Chen J; Wei L; Wei DQ
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepAFP: An effective computational framework for identifying antifungal peptides based on deep learning.
    Yao L; Zhang Y; Li W; Chung CR; Guan J; Zhang W; Chiang YC; Lee TY
    Protein Sci; 2023 Oct; 32(10):e4758. PubMed ID: 37595093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-AFPpred: identifying novel antifungal peptides using pretrained embeddings from seq2vec with 1DCNN-BiLSTM.
    Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34670278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. VotePLMs-AFP: Identification of antifreeze proteins using transformer-embedding features and ensemble learning.
    Qi D; Liu T
    Biochim Biophys Acta Gen Subj; 2024 Dec; 1868(12):130721. PubMed ID: 39426757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFP-CMBPred: Computational identification of antifreeze proteins by extending consensus sequences into multi-blocks evolutionary information.
    Ali F; Akbar S; Ghulam A; Maher ZA; Unar A; Talpur DB
    Comput Biol Med; 2021 Dec; 139():105006. PubMed ID: 34749096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Evaluation on Different Machine Learning Algorithms for Classification and Prediction of Antifungal Peptides.
    Mousavizadegan M; Mohabatkar H
    Med Chem; 2016; 12(8):795-800. PubMed ID: 26924627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating the discovery of antifungal peptides using deep temporal convolutional networks.
    Singh V; Shrivastava S; Kumar Singh S; Kumar A; Saxena S
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35152278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AFP-SPTS: An Accurate Prediction of Antifreeze Proteins Using Sequential and Pseudo-Tri-Slicing Evolutionary Features with an Extremely Randomized Tree.
    Khan A; Uddin J; Ali F; Kumar H; Alghamdi W; Ahmad A
    J Chem Inf Model; 2023 Feb; 63(3):826-834. PubMed ID: 36649569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PSSP-MVIRT: peptide secondary structure prediction based on a multi-view deep learning architecture.
    Cao X; He W; Chen Z; Li Y; Wang K; Zhang H; Wei L; Cui L; Su R; Wei L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34117740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Antifreeze Proteins Prediction with Protein Language Models and Hybrid Feature Extraction Networks.
    Wu J; Liu Y; Zhu Y; Yu DJ
    IEEE/ACM Trans Comput Biol Bioinform; 2024 Sep; PP():. PubMed ID: 39316498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational prediction of antifungal peptides via Chou's PseAAC and SVM.
    Mousavizadegan M; Mohabatkar H
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850016. PubMed ID: 30105927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties.
    Kandaswamy KK; Chou KC; Martinetz T; Möller S; Suganthan PN; Sridharan S; Pugalenthi G
    J Theor Biol; 2011 Feb; 270(1):56-62. PubMed ID: 21056045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Antifungal Activity of Antimicrobial Peptides by Transfer Learning from Protein Pretrained Models.
    Lobo F; González MS; Boto A; Pérez de la Lastra JM
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ToxIBTL: prediction of peptide toxicity based on information bottleneck and transfer learning.
    Wei L; Ye X; Sakurai T; Mu Z; Wei L
    Bioinformatics; 2022 Mar; 38(6):1514-1524. PubMed ID: 34999757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TargetFreeze: Identifying Antifreeze Proteins via a Combination of Weights using Sequence Evolutionary Information and Pseudo Amino Acid Composition.
    He X; Han K; Hu J; Yan H; Yang JY; Shen HB; Yu DJ
    J Membr Biol; 2015 Dec; 248(6):1005-14. PubMed ID: 26058944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ConPep: Prediction of peptide contact maps with pre-trained biological language model and multi-view feature extracting strategy.
    Wei Q; Wang R; Jiang Y; Wei L; Sun Y; Geng J; Su R
    Comput Biol Med; 2023 Dec; 167():107631. PubMed ID: 37948966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinformatics Approaches Applied to the Discovery of Antifungal Peptides.
    Rodríguez-Cerdeira C; Molares-Vila A; Sánchez-Cárdenas CD; Velásquez-Bámaca JS; Martínez-Herrera E
    Antibiotics (Basel); 2023 Mar; 12(3):. PubMed ID: 36978434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the frontiers of therapeutic breadth of antifungal peptides: A new avenue in antifungal drugs.
    Ul Haq I; Maryam S; Shyntum DY; Khan TA; Li F
    J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38710584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PLMACPred prediction of anticancer peptides based on protein language model and wavelet denoising transformation.
    Arif M; Musleh S; Fida H; Alam T
    Sci Rep; 2024 Jul; 14(1):16992. PubMed ID: 39043738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of antifreeze proteins using machine learning.
    Khan A; Uddin J; Ali F; Ahmad A; Alghushairy O; Banjar A; Daud A
    Sci Rep; 2022 Nov; 12(1):20672. PubMed ID: 36450775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.