BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 36631456)

  • 21. CircPlekha7 plays an anti-fibrotic role in intrauterine adhesions by modulating endometrial stromal cell proliferation and apoptosis.
    Xie W; He M; Liu Y; Huang X; Song D; Xiao Y
    J Reprod Dev; 2020 Dec; 66(6):493-504. PubMed ID: 32801258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MicroRNA-29b Inhibits Endometrial Fibrosis by Regulating the Sp1-TGF-β1/Smad-CTGF Axis in a Rat Model.
    Li J; Du S; Sheng X; Liu J; Cen B; Huang F; He Y
    Reprod Sci; 2016 Mar; 23(3):386-94. PubMed ID: 26392347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MicroRNA‑326 inhibits endometrial fibrosis by regulating TGF‑β1/Smad3 pathway in intrauterine adhesions.
    Ning J; Zhang H; Yang H
    Mol Med Rep; 2018 Aug; 18(2):2286-2292. PubMed ID: 29956752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Therapeutic Effect of Human Amniotic Epithelial Cells in Rat Models of Intrauterine Adhesions.
    Bai X; Liu J; Yuan W; Liu Y; Li W; Cao S; Yu L; Wang L
    Cell Transplant; 2020; 29():963689720908495. PubMed ID: 32223314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human amniotic epithelial cells improve fertility in an intrauterine adhesion mouse model.
    Li B; Zhang Q; Sun J; Lai D
    Stem Cell Res Ther; 2019 Aug; 10(1):257. PubMed ID: 31412924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transforming growth factor-β1 in intrauterine adhesion.
    Abudukeyoumu A; Li MQ; Xie F
    Am J Reprod Immunol; 2020 Aug; 84(2):e13262. PubMed ID: 32379911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Smad signaling coincides with epithelial-mesenchymal transition in a rat model of intrauterine adhesion.
    Guo LP; Chen LM; Chen F; Jiang NH; Sui L
    Am J Transl Res; 2019; 11(8):4726-4737. PubMed ID: 31497194
    [TBL] [Abstract][Full Text] [Related]  

  • 28. β-Klotho Promotes the Development of Intrauterine Adhesions via the PI3K/AKT Signaling Pathway.
    Guo Z; Wang Y; Wen X; Xu X; Yan L
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of different rat models intrauterine adhesion models and improvement of the technique for their establishment.
    Xi J; Pan Y; Jin C; Liu J; Cheng J; Xu B
    Exp Anim; 2023 May; 72(2):274-284. PubMed ID: 36642541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. si-SNHG5-FOXF2 inhibits TGF-β1-induced fibrosis in human primary endometrial stromal cells by the Wnt/β-catenin signalling pathway.
    Liu L; Chen G; Chen T; Shi W; Hu H; Song K; Huang R; Cai H; He Y
    Stem Cell Res Ther; 2020 Nov; 11(1):479. PubMed ID: 33176855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human umbilical cord blood-derived MSCs trans-differentiate into endometrial cells and regulate Th17/Treg balance through NF-κB signaling in rabbit intrauterine adhesions endometrium.
    Hua Q; Zhang Y; Li H; Li H; Jin R; Li L; Xiang Y; Tian M; Wang J; Sun L; Wang Y
    Stem Cell Res Ther; 2022 Jul; 13(1):301. PubMed ID: 35841027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats.
    Yang H; Wu S; Feng R; Huang J; Liu L; Liu F; Chen Y
    Stem Cell Res Ther; 2017 Nov; 8(1):267. PubMed ID: 29157289
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mycobiome Dysbiosis in Women with Intrauterine Adhesions.
    Liu NN; Zhao X; Tan JC; Liu S; Li BW; Xu WX; Peng L; Gu P; Li W; Shapiro R; Zheng X; Zhao W; Jiang YG; Chen D; Xu D; Wang H
    Microbiol Spectr; 2022 Aug; 10(4):e0132422. PubMed ID: 35730962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interceed and Estrogen Reduce Uterine Adhesions and Fibrosis and Improve Endometrial Receptivity in a Rabbit Model of Intrauterine Adhesions.
    Cai H; Li H; He Y
    Reprod Sci; 2016 Sep; 23(9):1208-16. PubMed ID: 26895816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ferroptosis contributes to endometrial fibrosis in intrauterine adhesions.
    Zhu Q; Yao S; Ye Z; Jiang P; Wang H; Zhang X; Liu D; Lv H; Cao C; Zhou Z; Zhou Z; Pan W; Zhao G; Hu Y
    Free Radic Biol Med; 2023 Aug; 205():151-162. PubMed ID: 37302615
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression and Potential Role of MMP-9 in Intrauterine Adhesion.
    Li C; Wang W; Sun S; Xu Y; Fang Z; Cong L
    Mediators Inflamm; 2021; 2021():6676510. PubMed ID: 33574731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement of vaginal probiotics Lactobacillus crispatus on intrauterine adhesion in mice model and in clinical practice.
    Wu F; Kong Y; Chen W; Liang D; Xiao Q; Hu L; Tan X; Wei J; Liu Y; Deng X; Liu Z; Chen T
    BMC Microbiol; 2023 Mar; 23(1):78. PubMed ID: 36949381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ellagic acid increases implantation rates with its antifibrotic effect in the rat model of intrauterine adhesion.
    Saribas GS; Akarca Dizakar O; Ozogul C; Celik E; Ergoren MC
    Pathol Res Pract; 2023 Jun; 246():154499. PubMed ID: 37163881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional structure micelles of heparin-poloxamer improve the therapeutic effect of 17β-estradiol on endometrial regeneration for intrauterine adhesions in a rat model.
    Zhang SS; Xia WT; Xu J; Xu HL; Lu CT; Zhao YZ; Wu XQ
    Int J Nanomedicine; 2017; 12():5643-5657. PubMed ID: 28848344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression and potential role of CXCL5 in the pathogenesis of intrauterine adhesions.
    Fang ZA; He Y; Sun C; Zhan L; Zhou G; Wei B; Sun S
    J Int Med Res; 2021 Mar; 49(3):300060521997718. PubMed ID: 33752504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.