These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 36631647)
1. A ligand insertion mechanism for cooperative NH Snyder BER; Turkiewicz AB; Furukawa H; Paley MV; Velasquez EO; Dods MN; Long JR Nature; 2023 Jan; 613(7943):287-291. PubMed ID: 36631647 [TBL] [Abstract][Full Text] [Related]
2. Tunable Ammonia Adsorption within Metal-Organic Frameworks with Different Unsaturated Metal Sites. Zhang D; Shen Y; Ding J; Zhou H; Zhang Y; Feng Q; Zhang X; Chen K; Wang J; Chen Q; Zhang Y; Li C Molecules; 2022 Nov; 27(22):. PubMed ID: 36431945 [TBL] [Abstract][Full Text] [Related]
3. Methylamine Separations Enabled by Cooperative Ligand Insertion in Copper-Carboxylate Metal-Organic Frameworks. Graf KI; Huang AJ; Meihaus KR; Long JR J Am Chem Soc; 2024 Aug; 146(34):23943-23954. PubMed ID: 39149845 [TBL] [Abstract][Full Text] [Related]
4. Computational Screening of Metal-Organic Frameworks for Ammonia Capture from H Zhu Z; Wang H; Wu XY; Luo K; Fan J ACS Omega; 2022 Oct; 7(42):37640-37653. PubMed ID: 36312414 [TBL] [Abstract][Full Text] [Related]
5. Anchoring LiCl in the Nanopores of Metal-Organic Frameworks for Ultra-High Uptake and Selective Separation of Ammonia. Shi Y; Wang Z; Li Z; Wang H; Xiong D; Qiu J; Tian X; Feng G; Wang J Angew Chem Int Ed Engl; 2022 Nov; 61(47):e202212032. PubMed ID: 36180385 [TBL] [Abstract][Full Text] [Related]
6. A Combined Experimental and Computational Study on the Adsorption Sites of Zinc-Based MOFs for Efficient Ammonia Capture. Zhang D; Shen Y; Ding J; Zhou H; Zhang Y; Feng Q; Zhang X; Chen K; Xu P; Zhang P Molecules; 2022 Aug; 27(17):. PubMed ID: 36080380 [TBL] [Abstract][Full Text] [Related]
7. Controlling Cooperative CO Siegelman RL; McDonald TM; Gonzalez MI; Martell JD; Milner PJ; Mason JA; Berger AH; Bhown AS; Long JR J Am Chem Soc; 2017 Aug; 139(30):10526-10538. PubMed ID: 28669181 [TBL] [Abstract][Full Text] [Related]
8. A novel method for production of nitrogen fertilizer with low energy consumption by efficiently adsorbing and separating waste ammonia. Tian H; Zheng Z; Pang X; Lan S; Han Z; Liang Z; Sun D Environ Res; 2024 Apr; 247():118245. PubMed ID: 38244966 [TBL] [Abstract][Full Text] [Related]
9. Highly effective ammonia removal in a series of Brønsted acidic porous polymers: investigation of chemical and structural variations. Barin G; Peterson GW; Crocellà V; Xu J; Colwell KA; Nandy A; Reimer JA; Bordiga S; Long JR Chem Sci; 2017 Jun; 8(6):4399-4409. PubMed ID: 30155218 [TBL] [Abstract][Full Text] [Related]
10. Removal of Ammonia Emissions via Reversible Structural Transformation in M(BDC) (M = Cu, Zn, Cd) Metal-Organic Frameworks. Chen Y; Du Y; Liu P; Yang J; Li L; Li J Environ Sci Technol; 2020 Mar; 54(6):3636-3642. PubMed ID: 32068395 [TBL] [Abstract][Full Text] [Related]
11. Identifying UiO-67 Metal-Organic Framework Defects and Binding Sites through Ammonia Adsorption. Swaroopa Datta Devulapalli V; McDonnell RP; Ruffley JP; Shukla PB; Luo TY; De Souza ML; Das P; Rosi NL; Karl Johnson J; Borguet E ChemSusChem; 2022 Jan; 15(1):e202102217. PubMed ID: 34725931 [TBL] [Abstract][Full Text] [Related]
12. Selective gas adsorption and separation in metal-organic frameworks. Li JR; Kuppler RJ; Zhou HC Chem Soc Rev; 2009 May; 38(5):1477-504. PubMed ID: 19384449 [TBL] [Abstract][Full Text] [Related]
13. Application and Challenge of Metal/Covalent Organic Frameworks in Ammonia Sorption and Separation. Fu Y; Zhang W; Ma H Chempluschem; 2024 Oct; 89(10):e202400236. PubMed ID: 38895820 [TBL] [Abstract][Full Text] [Related]
14. High Ammonia Uptake of a Metal-Organic Framework Adsorbent in a Wide Pressure Range. Kim DW; Kang DW; Kang M; Lee JH; Choe JH; Chae YS; Choi DS; Yun H; Hong CS Angew Chem Int Ed Engl; 2020 Dec; 59(50):22531-22536. PubMed ID: 32969148 [TBL] [Abstract][Full Text] [Related]
15. Tailoring Multiple Sites of Metal-Organic Frameworks for Highly Efficient and Reversible Ammonia Adsorption. Wang Z; Li Z; Zhang XG; Xia Q; Wang H; Wang C; Wang Y; He H; Zhao Y; Wang J ACS Appl Mater Interfaces; 2021 Dec; 13(47):56025-56034. PubMed ID: 34788531 [TBL] [Abstract][Full Text] [Related]
16. Ammonia Capture in Rhodium(II)-Based Metal-Organic Polyhedra via Synergistic Coordinative and H-Bonding Interactions. Carné-Sánchez A; Martínez-Esaín J; Rookard T; Flood CJ; Faraudo J; Stylianou KC; Maspoch D ACS Appl Mater Interfaces; 2023 Feb; 15(5):6747-6754. PubMed ID: 36695491 [TBL] [Abstract][Full Text] [Related]
17. Investigating the Influence of Hexanuclear Clusters in Isostructural Metal-Organic Frameworks on Toxic Gas Adsorption. Kirlikovali KO; Chen Z; Wang X; Mian MR; Alayoglu S; Islamoglu T; Farha OK ACS Appl Mater Interfaces; 2022 Jan; 14(2):3048-3056. PubMed ID: 34995051 [TBL] [Abstract][Full Text] [Related]
18. Silver-Nanoparticle-Assisted Modulation of NH Park S; Gu M; Kim Y; Bae C; Kim D; Kim J ACS Omega; 2022 Jun; 7(23):19484-19490. PubMed ID: 35721892 [TBL] [Abstract][Full Text] [Related]
19. Ammonia Capture within Zirconium Metal-Organic Frameworks: Reversible and Irreversible Uptake. Liu J; Lu Z; Chen Z; Rimoldi M; Howarth AJ; Chen H; Alayoglu S; Snurr RQ; Farha OK; Hupp JT ACS Appl Mater Interfaces; 2021 May; 13(17):20081-20093. PubMed ID: 33886253 [TBL] [Abstract][Full Text] [Related]
20. [Application of gas chromatography separation based on metal-organic framework material as stationary phase]. Tang W; Meng S; Xu M; Gu Z Se Pu; 2021 Jan; 39(1):57-68. PubMed ID: 34227359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]