BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36631647)

  • 1. A ligand insertion mechanism for cooperative NH
    Snyder BER; Turkiewicz AB; Furukawa H; Paley MV; Velasquez EO; Dods MN; Long JR
    Nature; 2023 Jan; 613(7943):287-291. PubMed ID: 36631647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable Ammonia Adsorption within Metal-Organic Frameworks with Different Unsaturated Metal Sites.
    Zhang D; Shen Y; Ding J; Zhou H; Zhang Y; Feng Q; Zhang X; Chen K; Wang J; Chen Q; Zhang Y; Li C
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Screening of Metal-Organic Frameworks for Ammonia Capture from H
    Zhu Z; Wang H; Wu XY; Luo K; Fan J
    ACS Omega; 2022 Oct; 7(42):37640-37653. PubMed ID: 36312414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anchoring LiCl in the Nanopores of Metal-Organic Frameworks for Ultra-High Uptake and Selective Separation of Ammonia.
    Shi Y; Wang Z; Li Z; Wang H; Xiong D; Qiu J; Tian X; Feng G; Wang J
    Angew Chem Int Ed Engl; 2022 Nov; 61(47):e202212032. PubMed ID: 36180385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Combined Experimental and Computational Study on the Adsorption Sites of Zinc-Based MOFs for Efficient Ammonia Capture.
    Zhang D; Shen Y; Ding J; Zhou H; Zhang Y; Feng Q; Zhang X; Chen K; Xu P; Zhang P
    Molecules; 2022 Aug; 27(17):. PubMed ID: 36080380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling Cooperative CO
    Siegelman RL; McDonald TM; Gonzalez MI; Martell JD; Milner PJ; Mason JA; Berger AH; Bhown AS; Long JR
    J Am Chem Soc; 2017 Aug; 139(30):10526-10538. PubMed ID: 28669181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for production of nitrogen fertilizer with low energy consumption by efficiently adsorbing and separating waste ammonia.
    Tian H; Zheng Z; Pang X; Lan S; Han Z; Liang Z; Sun D
    Environ Res; 2024 Apr; 247():118245. PubMed ID: 38244966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly effective ammonia removal in a series of Brønsted acidic porous polymers: investigation of chemical and structural variations.
    Barin G; Peterson GW; Crocellà V; Xu J; Colwell KA; Nandy A; Reimer JA; Bordiga S; Long JR
    Chem Sci; 2017 Jun; 8(6):4399-4409. PubMed ID: 30155218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of Ammonia Emissions via Reversible Structural Transformation in M(BDC) (M = Cu, Zn, Cd) Metal-Organic Frameworks.
    Chen Y; Du Y; Liu P; Yang J; Li L; Li J
    Environ Sci Technol; 2020 Mar; 54(6):3636-3642. PubMed ID: 32068395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying UiO-67 Metal-Organic Framework Defects and Binding Sites through Ammonia Adsorption.
    Swaroopa Datta Devulapalli V; McDonnell RP; Ruffley JP; Shukla PB; Luo TY; De Souza ML; Das P; Rosi NL; Karl Johnson J; Borguet E
    ChemSusChem; 2022 Jan; 15(1):e202102217. PubMed ID: 34725931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective gas adsorption and separation in metal-organic frameworks.
    Li JR; Kuppler RJ; Zhou HC
    Chem Soc Rev; 2009 May; 38(5):1477-504. PubMed ID: 19384449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application and Challenge of Metal/Covalent Organic Frameworks in Ammonia Sorption and Separation.
    Fu Y; Zhang W; Ma H
    Chempluschem; 2024 Jun; ():e202400236. PubMed ID: 38895820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Ammonia Uptake of a Metal-Organic Framework Adsorbent in a Wide Pressure Range.
    Kim DW; Kang DW; Kang M; Lee JH; Choe JH; Chae YS; Choi DS; Yun H; Hong CS
    Angew Chem Int Ed Engl; 2020 Dec; 59(50):22531-22536. PubMed ID: 32969148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tailoring Multiple Sites of Metal-Organic Frameworks for Highly Efficient and Reversible Ammonia Adsorption.
    Wang Z; Li Z; Zhang XG; Xia Q; Wang H; Wang C; Wang Y; He H; Zhao Y; Wang J
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56025-56034. PubMed ID: 34788531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver-Nanoparticle-Assisted Modulation of NH
    Park S; Gu M; Kim Y; Bae C; Kim D; Kim J
    ACS Omega; 2022 Jun; 7(23):19484-19490. PubMed ID: 35721892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ammonia Capture in Rhodium(II)-Based Metal-Organic Polyhedra via Synergistic Coordinative and H-Bonding Interactions.
    Carné-Sánchez A; Martínez-Esaín J; Rookard T; Flood CJ; Faraudo J; Stylianou KC; Maspoch D
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6747-6754. PubMed ID: 36695491
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating the Influence of Hexanuclear Clusters in Isostructural Metal-Organic Frameworks on Toxic Gas Adsorption.
    Kirlikovali KO; Chen Z; Wang X; Mian MR; Alayoglu S; Islamoglu T; Farha OK
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3048-3056. PubMed ID: 34995051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ammonia Capture within Zirconium Metal-Organic Frameworks: Reversible and Irreversible Uptake.
    Liu J; Lu Z; Chen Z; Rimoldi M; Howarth AJ; Chen H; Alayoglu S; Snurr RQ; Farha OK; Hupp JT
    ACS Appl Mater Interfaces; 2021 May; 13(17):20081-20093. PubMed ID: 33886253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Application of gas chromatography separation based on metal-organic framework material as stationary phase].
    Tang W; Meng S; Xu M; Gu Z
    Se Pu; 2021 Jan; 39(1):57-68. PubMed ID: 34227359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting Ammonia Uptake within Metal-Organic Frameworks by Anion Modulating Strategy.
    Khanpour Matikolaei M; Binaeian E
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27159-27168. PubMed ID: 34087069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.