These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36631648)

  • 1. Periclase deforms more slowly than bridgmanite under mantle conditions.
    Cordier P; Gouriet K; Weidner T; Van Orman J; Castelnau O; Jackson JM; Carrez P
    Nature; 2023 Jan; 613(7943):303-307. PubMed ID: 36631648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of diffusion-driven pure climb creep on the rheology of bridgmanite under lower mantle conditions.
    Reali R; Van Orman JA; Pigott JS; Jackson JM; Boioli F; Carrez P; Cordier P
    Sci Rep; 2019 Feb; 9(1):2053. PubMed ID: 30765772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the rheology of MgO under Earth's mantle pressure, temperature and strain rates.
    Cordier P; Amodeo J; Carrez P
    Nature; 2012 Jan; 481(7380):177-80. PubMed ID: 22237109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscosity of bridgmanite determined by in situ stress and strain measurements in uniaxial deformation experiments.
    Tsujino N; Yamazaki D; Nishihara Y; Yoshino T; Higo Y; Tange Y
    Sci Adv; 2022 Apr; 8(13):eabm1821. PubMed ID: 35353572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pure climb creep mechanism drives flow in Earth's lower mantle.
    Boioli F; Carrez P; Cordier P; Devincre B; Gouriet K; Hirel P; Kraych A; Ritterbex S
    Sci Adv; 2017 Mar; 3(3):e1601958. PubMed ID: 28345037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dislocation creep in MgSiO3 perovskite at conditions of the Earth's uppermost lower mantle.
    Cordier P; Ungár T; Zsoldos L; Tichy G
    Nature; 2004 Apr; 428(6985):837-40. PubMed ID: 15103372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for a Fe
    Kurnosov A; Marquardt H; Frost DJ; Ballaran TB; Ziberna L
    Nature; 2017 Mar; 543(7646):543-546. PubMed ID: 28289289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions.
    Girard J; Amulele G; Farla R; Mohiuddin A; Karato S
    Science; 2016 Jan; 351(6269):144-7. PubMed ID: 26721681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of Fe,Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite.
    Ismailova L; Bykova E; Bykov M; Cerantola V; McCammon C; Boffa Ballaran T; Bobrov A; Sinmyo R; Dubrovinskaia N; Glazyrin K; Liermann HP; Kupenko I; Hanfland M; Prescher C; Prakapenka V; Svitlyk V; Dubrovinsky L
    Sci Adv; 2016 Jul; 2(7):e1600427. PubMed ID: 27453945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in bridgmanite grain size accounts for the mid-mantle viscosity jump.
    Fei H; Ballmer MD; Faul U; Walte N; Cao W; Katsura T
    Nature; 2023 Aug; 620(7975):794-799. PubMed ID: 37407826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependence of nitrogen solubility in bridgmanite and evolution of nitrogen storage capacity in the lower mantle.
    Fukuyama K; Kagi H; Inoue T; Kakizawa S; Shinmei T; Sano Y; Deligny C; Füri E
    Sci Rep; 2023 Mar; 13(1):3537. PubMed ID: 36864194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals.
    Carrez P; Ferré D; Cordier P
    Nature; 2007 Mar; 446(7131):68-70. PubMed ID: 17330041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of ferrous-iron-rich bridgmanite under reducing midmantle conditions.
    Shim SH; Grocholski B; Ye Y; Alp EE; Xu S; Morgan D; Meng Y; Prakapenka VB
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):6468-6473. PubMed ID: 28584106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melting temperatures of MgO under high pressure by micro-texture analysis.
    Kimura T; Ohfuji H; Nishi M; Irifune T
    Nat Commun; 2017 Jun; 8():15735. PubMed ID: 28580945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nearly water-saturated mantle transition zone inferred from mineral viscosity.
    Fei H; Yamazaki D; Sakurai M; Miyajima N; Ohfuji H; Katsura T; Yamamoto T
    Sci Adv; 2017 Jun; 3(6):e1603024. PubMed ID: 28630912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite.
    Tsujino N; Nishihara Y; Yamazaki D; Seto Y; Higo Y; Takahashi E
    Nature; 2016 Nov; 539(7627):81-84. PubMed ID: 27750277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium dissolution in bridgmanite in the Earth's deep mantle.
    Ko B; Greenberg E; Prakapenka V; Alp EE; Bi W; Meng Y; Zhang D; Shim SH
    Nature; 2022 Nov; 611(7934):88-92. PubMed ID: 36261527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of large low shear velocity provinces through the decomposition of oxidized mantle.
    Wang W; Liu J; Zhu F; Li M; Dorfman SM; Li J; Wu Z
    Nat Commun; 2021 Mar; 12(1):1911. PubMed ID: 33771990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grain Growth Rates of MgSiO3 Perovskite and Periclase Under Lower Mantle Conditions.
    Yamazaki D; Kato T; Ohtani E; Toriumi M
    Science; 1996 Dec; 274(5295):2052-4. PubMed ID: 8953030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Davemaoite as the mantle mineral with the highest melting temperature.
    Yin K; Belonoshko AB; Li Y; Lu X
    Sci Adv; 2023 Dec; 9(49):eadj2660. PubMed ID: 38055828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.