These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 3663173)

  • 1. Analysis of the molecular size of tomato (Lycopersicon esculentum Mill) fruit polyuronides by gel filtration and low-speed sedimentation equilibrium.
    Seymour GB; Harding SE
    Biochem J; 1987 Jul; 245(2):463-6. PubMed ID: 3663173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyuronides in Avocado (Persea americana) and Tomato (Lycopersicon esculentum) Fruits Exhibit Markedly Different Patterns of Molecular Weight Downshifts during Ripening.
    Huber DJ; O'Donoghue EM
    Plant Physiol; 1993 Jun; 102(2):473-480. PubMed ID: 12231835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Antisense Suppression of Endopolygalacturonase Activity on Polyuronide Molecular Weight in Ripening Tomato Fruit and in Fruit Homogenates.
    Brummell DA; Labavitch JM
    Plant Physiol; 1997 Oct; 115(2):717-725. PubMed ID: 12223839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methyl de-esterification as a major factor regulating the extent of pectin depolymerization during fruit ripening: a comparison of the action of avocado (Persea americana) and tomato (Lycopersicon esculentum) polygalacturonases.
    Wakabayashi K; Hoson T; Huber DJ
    J Plant Physiol; 2003 Jun; 160(6):667-73. PubMed ID: 12872489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Products Released from Enzymically Active Cell Wall Stimulate Ethylene Production and Ripening in Preclimacteric Tomato (Lycopersicon esculentum Mill.) Fruit.
    Brecht JK; Huber DJ
    Plant Physiol; 1988 Dec; 88(4):1037-41. PubMed ID: 16666417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Tomato Fruit Cell Wall : II. Polyuronide Metabolism in a Nonsoftening Tomato Mutant.
    Koch JL; Nevins DJ
    Plant Physiol; 1990 Mar; 92(3):642-7. PubMed ID: 16667328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit results in polyuronide degradation but not fruit softening.
    Giovannoni JJ; DellaPenna D; Bennett AB; Fischer RL
    Plant Cell; 1989 Jan; 1(1):53-63. PubMed ID: 2535467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of Cell Wall Polysaccharides during Tomato Fruit Ripening.
    Gross KC; Wallner SJ
    Plant Physiol; 1979 Jan; 63(1):117-20. PubMed ID: 16660660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of tomato cell wall degradation in vitro: implications for the study of fruit-softening enzymes.
    Wallner SJ; Bloom HL
    Plant Physiol; 1977 Aug; 60(2):207-10. PubMed ID: 16660060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uronic Acid products release from enzymically active cell wall from tomato fruit and its dependency on enzyme quantity and distribution.
    Huber DJ; Lee JH
    Plant Physiol; 1988 Jul; 87(3):592-7. PubMed ID: 16666191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Use of Nonaqueous Fractionation to Assess the Ionic Composition of the Apoplast during Fruit Ripening.
    MacDougall AJ; Parker R; Selvendran RR
    Plant Physiol; 1995 Aug; 108(4):1679-1689. PubMed ID: 12228573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of a homogeneous tomato fruit peroxidase.
    Thomas RL; Jen JJ
    Prep Biochem; 1980; 10(5):581-96. PubMed ID: 7443633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Macromolecular components of tomato fruit pectin.
    Fishman ML; Gross KC; Gillespie DT; Sondey SM
    Arch Biochem Biophys; 1989 Oct; 274(1):179-91. PubMed ID: 2774572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteinase inhibitors I and II in fruit of wild tomato species: Transient components of a mechanism for defense and seed dispersal.
    Pearce G; Ryan CA; Liljegren D
    Planta; 1988 Oct; 175(4):527-31. PubMed ID: 24221936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of the proteinase inhibitor-inducing factor from tomato leaves. Identity and activity of poly- and oligogalacturonide fragments.
    Bishop PD; Pearce G; Bryant JE; Ryan CA
    J Biol Chem; 1984 Nov; 259(21):13172-7. PubMed ID: 6490652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro characterization of tomato fruit softening : the use of enzymically active cell walls.
    Rushing JW; Huber DJ
    Plant Physiol; 1984 Aug; 75(4):891-4. PubMed ID: 16663755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical characterization of fracture callus proteoglycans.
    Kopman CR; Boskey AL; Lane JM; Pita JC; Eaton B
    J Orthop Res; 1987; 5(1):7-13. PubMed ID: 3819913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of isolated tomato cell walls by purified polygalacturonase in vitro.
    Themmen AP; Tucker GA; Grierson D
    Plant Physiol; 1982 Jan; 69(1):122-4. PubMed ID: 16662142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Components of proteoglycan aggregates in human hyaline cartilage].
    Feshchenko SP; Krasnopol'skaia KD; Shishkin SS
    Biokhimiia; 1984 Oct; 49(10):1679-85. PubMed ID: 6518188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on nucleic acids of living fossils. 3. A classification of transfer ribonucleic acids by the elution profiles on gel filtration and sedimentation profiles on sucrose density gradient.
    Shimizu N
    J Biochem; 1971 Apr; 69(4):761-70. PubMed ID: 5103141
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.