These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 3663177)

  • 1. Redox state and lactate accumulation in human skeletal muscle during dynamic exercise.
    Sahlin K; Katz A; Henriksson J
    Biochem J; 1987 Jul; 245(2):551-6. PubMed ID: 3663177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of decreased oxygen availability on NADH and lactate contents in human skeletal muscle during exercise.
    Katz A; Sahlin K
    Acta Physiol Scand; 1987 Sep; 131(1):119-27. PubMed ID: 3673605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADH content in type I and type II human muscle fibres after dynamic exercise.
    Ren JM; Henriksson J; Katz A; Sahlin K
    Biochem J; 1988 Apr; 251(1):183-7. PubMed ID: 3390152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of short-term submaximal training in humans on muscle metabolism in exercise.
    Putman CT; Jones NL; Hultman E; Hollidge-Horvat MG; Bonen A; McConachie DR; Heigenhauser GJ
    Am J Physiol; 1998 Jul; 275(1):E132-9. PubMed ID: 9688884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle carnitine metabolism during incremental dynamic exercise in humans.
    Sahlin K
    Acta Physiol Scand; 1990 Mar; 138(3):259-62. PubMed ID: 2327259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle pyruvate dehydrogenase activity during maximal exercise in humans.
    Putman CT; Jones NL; Lands LC; Bragg TM; Hollidge-Horvat MG; Heigenhauser GJ
    Am J Physiol; 1995 Sep; 269(3 Pt 1):E458-68. PubMed ID: 7573423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox state changes in human skeletal muscle after isometric contraction.
    Henriksson J; Katz A; Sahlin K
    J Physiol; 1986 Nov; 380():441-51. PubMed ID: 3612570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of lactic acid production during exercise.
    Katz A; Sahlin K
    J Appl Physiol (1985); 1988 Aug; 65(2):509-18. PubMed ID: 3049511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADH in human skeletal muscle during short-term intense exercise.
    Sahlin K
    Pflugers Arch; 1985 Feb; 403(2):193-6. PubMed ID: 3982970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactate content and pH in muscle obtained after dynamic exercise.
    Sahlin K; Harris RC; Nylind B; Hultman E
    Pflugers Arch; 1976 Dec; 367(2):143-9. PubMed ID: 13343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise.
    Sahlin K; Katz A; Broberg S
    Am J Physiol; 1990 Nov; 259(5 Pt 1):C834-41. PubMed ID: 2240197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.
    Li Y; Dash RK; Kim J; Saidel GM; Cabrera ME
    Am J Physiol Cell Physiol; 2009 Jan; 296(1):C25-46. PubMed ID: 18829894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise.
    Spencer MK; Katz A
    Am J Physiol; 1991 Jun; 260(6 Pt 1):E859-64. PubMed ID: 2058662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic threshold: review of the concept and directions for future research.
    Brooks GA
    Med Sci Sports Exerc; 1985 Feb; 17(1):22-34. PubMed ID: 3884959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of the mitochondrial redox state in human skeletal muscle during exercise.
    Graham TE; Saltin B
    J Appl Physiol (1985); 1989 Feb; 66(2):561-6. PubMed ID: 2565330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle malonyl-CoA content at the onset of exercise at varying power outputs in humans.
    Odland LM; Howlett RA; Heigenhauser GJ; Hultman E; Spriet LL
    Am J Physiol; 1998 Jun; 274(6):E1080-5. PubMed ID: 9611159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy sources in fully aerobic rest-work transitions: a new role for glycolysis.
    Connett RJ; Gayeski TE; Honig CR
    Am J Physiol; 1985 Jun; 248(6 Pt 2):H922-9. PubMed ID: 4003569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired oxidative metabolism increases adenine nucleotide breakdown in McArdle's disease.
    Sahlin K; Areskog NH; Haller RG; Henriksson KG; Jorfeldt L; Lewis SF
    J Appl Physiol (1985); 1990 Oct; 69(4):1231-5. PubMed ID: 2262440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen deficit at the onset of submaximal exercise is not due to a delayed oxygen transport.
    Sahlin K; Ren JM; Broberg S
    Acta Physiol Scand; 1988 Oct; 134(2):175-80. PubMed ID: 3227942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.