These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 3663205)

  • 21. The effect of fasting on the potential difference across the brush-border membrane of enterocytes in rat small intestine.
    Debnam ES; Thompson CS
    J Physiol; 1984 Oct; 355():449-56. PubMed ID: 6436478
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Effect of papaverine on monosaccharide and glycine transport in the small intestine in vitro].
    Gurman EG; Bagirova EA
    Fiziol Zh (1978); 1989; 35(2):47-50. PubMed ID: 2721743
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrical properties and active solute transport in rat small intestine. II. Conductive properties of transepithelial routes.
    Okada Y; Irimajiri A; Inouye A
    J Membr Biol; 1977 Mar; 31(3):221-32. PubMed ID: 845930
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acute and chronic exposure to ethanol and the electrophysiology of the brush border membrane of rat small intestine.
    al-Balool F; Debnam ES; Mazzanti R
    Gut; 1989 Dec; 30(12):1698-703. PubMed ID: 2612984
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Species difference in mechanisms of D-xylose absorption by the small intestine.
    Ohkohchi N; Himukai M
    Jpn J Physiol; 1984; 34(4):669-77. PubMed ID: 6438376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Membrane domains and macromolecular transport in intestinal epithelial cells.
    Neutra MR; Wilson JM; Weltzin RA; Kraehenbuhl JP
    Am Rev Respir Dis; 1988 Dec; 138(6 Pt 2):S10-6. PubMed ID: 3202517
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Glucose depolarizes villous but not crypt cell apical membrane potential difference: a micropuncture study of crypt-villus heterogeneity in the rat.
    Stewart CP; Turnberg LA
    Biochim Biophys Acta; 1987 Sep; 902(3):293-300. PubMed ID: 3620462
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Appearance of phloridzin-sensitive glucose transport is not controlled at mRNA level in rabbit jejunal enterocytes.
    Smith MW; Turvey A; Freeman TC
    Exp Physiol; 1992 May; 77(3):525-8. PubMed ID: 1632962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The application of a potential-sensitive cyanine dye to rat small intestinal brush border membrane vesicles.
    Stieger B; Burckhardt G; Murer H
    Biochim Biophys Acta; 1983 Jul; 732(1):324-6. PubMed ID: 6871200
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intestinal glucose absorption in adrenalectomized rats: transport by isolated microvillous membrane vesicles.
    Gastaldi G; Casirola D; Ferrari G; Rindi G
    Pflugers Arch; 1982 Nov; 395(3):253-6. PubMed ID: 7155799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Asymmetrical behavior of small intestine epithelium under osmotic pressure].
    Melikiants AG; Malenkov AG
    Biofizika; 1976; 21(3):500-3. PubMed ID: 963103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Change in the intensity of amino acid transport and electrolyte counterflow through the enterocyte membranes under the influence of fluorine].
    Iukhnovets RA; Bachinskiĭ PP
    Fiziol Zh; 1977; 23(5):636-40. PubMed ID: 913649
    [No Abstract]   [Full Text] [Related]  

  • 33. Studies on transmural potentials in vitro in relation to intestinal absorption. IV. Phlorizin-sugar interactions in rat gut.
    Lyon I
    Biochim Biophys Acta; 1967 Jul; 135(3):496-506. PubMed ID: 6048819
    [No Abstract]   [Full Text] [Related]  

  • 34. The small-intestinal sodium-glucose cotransporter(s).
    Semenza G; Kessler M; Schmidt U; Venter JC; Fraser CM
    Ann N Y Acad Sci; 1985; 456():83-96. PubMed ID: 2418735
    [No Abstract]   [Full Text] [Related]  

  • 35. [Study on the function of microvilli in the rat retinal pigment epithelium (author's transl)].
    Asayama K
    Nippon Ganka Gakkai Zasshi; 1979 Jul; 83(7):721-32. PubMed ID: 495361
    [No Abstract]   [Full Text] [Related]  

  • 36. [FREE CONSUMPTION OF GLUCOSE SOLUTION BY RATS AS A CRITERION FOR EVALUATION ITS ABSORPTION IN THE SMALL INTESTINE (Experimental study and mathematical modeling)].
    Gruzdkov AA; Gromova LV; Dmitrieva YV; Alekseeva AS
    Ross Fiziol Zh Im I M Sechenova; 2015 Jun; 101(6):708-20. PubMed ID: 26470490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Localization of peptide hydrolysis in the enterocyte and the transport mechanisms of apical membrane.
    Ugolev AM; Timofeeva NM; Roshchina GM; Smirnova LF; Gruzdkov AA; Gusev SA
    Comp Biochem Physiol A Comp Physiol; 1990; 95(4):501-9. PubMed ID: 1971542
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amino acid inhibition of the exit of monosaccharide from the intestinal epithelium [proceedings].
    Boyd CA
    J Physiol; 1977 Oct; 271(2):48P-49P. PubMed ID: 925999
    [No Abstract]   [Full Text] [Related]  

  • 39. The effects of transportable ('blockers') and non-transportable inhibitors ('lockers') on rat transjejunal potential difference in vivo [proceedings].
    Levin RJ; McGourty J
    J Physiol; 1976 Dec; 263(1):226P-227P. PubMed ID: 1011163
    [No Abstract]   [Full Text] [Related]  

  • 40. [Free choice of salt solutions and functional enzyme-transport mechanisms of the small intestine in relation to different calcium levels in the body].
    Gurman EG; Bagirova EA; Surmak VV
    Fiziol Zh (1978); 1990; 36(3):35-40. PubMed ID: 2394246
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.