BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36632078)

  • 1. Building and analyzing machine learning-based warfarin dose prediction models using scikit-learn.
    Ahn S
    Transl Clin Pharmacol; 2022 Dec; 30(4):172-181. PubMed ID: 36632078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermogravimetric experiments based prediction of biomass pyrolysis behavior: A comparison of typical machine learning regression models in Scikit-learn.
    Zhong Y; Liu F; Huang G; Zhang J; Li C; Ding Y
    Mar Pollut Bull; 2024 May; 202():116361. PubMed ID: 38636345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning for Prediction of Stable Warfarin Dose in US Latinos and Latin Americans.
    Steiner HE; Giles JB; Patterson HK; Feng J; El Rouby N; Claudio K; Marcatto LR; Tavares LC; Galvez JM; Calderon-Ospina CA; Sun X; Hutz MH; Scott SA; Cavallari LH; Fonseca-Mendoza DJ; Duconge J; Botton MR; Santos PCJL; Karnes JH
    Front Pharmacol; 2021; 12():749786. PubMed ID: 34776967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating warfarin dosing models on multiple datasets with a novel software framework and evolutionary optimisation.
    Truda G; Marais P
    J Biomed Inform; 2021 Jan; 113():103634. PubMed ID: 33271340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Nine Statistical Model Based Warfarin Pharmacogenetic Dosing Algorithms Using the Racially Diverse International Warfarin Pharmacogenetic Consortium Cohort Database.
    Liu R; Li X; Zhang W; Zhou HH
    PLoS One; 2015; 10(8):e0135784. PubMed ID: 26305568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Adapted Neural-Fuzzy Inference System Model Using Preprocessed Balance Data to Improve the Predictive Accuracy of Warfarin Maintenance Dosing in Patients After Heart Valve Replacement.
    Gu ZC; Huang SR; Dong L; Zhou Q; Wang J; Fu B; Chen J
    Cardiovasc Drugs Ther; 2022 Oct; 36(5):879-889. PubMed ID: 33877502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DBCSMOTE: a clustering-based oversampling technique for data-imbalanced warfarin dose prediction.
    Tao Y; Zhang Y; Jiang B
    BMC Med Genomics; 2020 Oct; 13(Suppl 10):152. PubMed ID: 33087117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing machine learning algorithms to predict 5-year survival in patients with chronic myeloid leukemia.
    Shanbehzadeh M; Afrash MR; Mirani N; Kazemi-Arpanahi H
    BMC Med Inform Decis Mak; 2022 Sep; 22(1):236. PubMed ID: 36068539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ensemble learning based framework to estimate warfarin maintenance dose with cross-over variables exploration on incomplete data set.
    Liu Y; Chen J; You Y; Xu A; Li P; Wang Y; Sun J; Yu Z; Gao F; Zhang J
    Comput Biol Med; 2021 Apr; 131():104242. PubMed ID: 33578070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of a proposed warfarin dosing algorithm based on the genetic make-up of Egyptian patients.
    Ekladious SM; Issac MS; El-Atty Sharaf SA; Abou-Youssef HS
    Mol Diagn Ther; 2013 Dec; 17(6):381-90. PubMed ID: 23839801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the predictive abilities of pharmacogenetics-based warfarin dosing algorithms using seven mathematical models in Chinese patients.
    Li X; Liu R; Luo ZY; Yan H; Huang WH; Yin JY; Mao XY; Chen XP; Liu ZQ; Zhou HH; Zhang W
    Pharmacogenomics; 2015; 16(6):583-90. PubMed ID: 25872772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Algorithm for Predicting Warfarin Dose in Caribbean Hispanics Using Pharmacogenetic Data.
    Roche-Lima A; Roman-Santiago A; Feliu-Maldonado R; Rodriguez-Maldonado J; Nieves-Rodriguez BG; Carrasquillo-Carrion K; Ramos CM; da Luz Sant'Ana I; Massey SE; Duconge J
    Front Pharmacol; 2019; 10():1550. PubMed ID: 32038238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning for neuroimaging with scikit-learn.
    Abraham A; Pedregosa F; Eickenberg M; Gervais P; Mueller A; Kossaifi J; Gramfort A; Thirion B; Varoquaux G
    Front Neuroinform; 2014; 8():14. PubMed ID: 24600388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-dimensional pharmacogenetic prediction of a continuous trait using machine learning techniques with application to warfarin dose prediction in African Americans.
    Cosgun E; Limdi NA; Duarte CW
    Bioinformatics; 2011 May; 27(10):1384-9. PubMed ID: 21450715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning for prediction of euploidy in human embryos: in search of the best-performing model and predictive features.
    De Gheselle S; Jacques C; Chambost J; Blank C; Declerck K; De Croo I; Hickman C; Tilleman K
    Fertil Steril; 2022 Apr; 117(4):738-746. PubMed ID: 35058042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multicenter random forest model for effective prognosis prediction in collaborative clinical research network.
    Li J; Tian Y; Zhu Y; Zhou T; Li J; Ding K; Li J
    Artif Intell Med; 2020 Mar; 103():101814. PubMed ID: 32143809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gnocis: An integrated system for interactive and reproducible analysis and modelling of cis-regulatory elements in Python 3.
    Bredesen-Aa BA; Rehmsmeier M
    PLoS One; 2022; 17(9):e0274338. PubMed ID: 36084008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of information theoretic feature selection and machine learning methods for the development of genetic risk prediction models.
    Jalali-Najafabadi F; Stadler M; Dand N; Jadon D; Soomro M; Ho P; Marzo-Ortega H; Helliwell P; Korendowych E; Simpson MA; Packham J; Smith CH; Barker JN; McHugh N; Warren RB; Barton A; Bowes J; ;
    Sci Rep; 2021 Dec; 11(1):23335. PubMed ID: 34857774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.