These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 36632506)

  • 21. Exogenous phytoestrogenic molecule icaritin incorporated into a porous scaffold for enhancing bone defect repair.
    Wang XL; Xie XH; Zhang G; Chen SH; Yao D; He K; Wang XH; Yao XS; Leng Y; Fung KP; Leung KS; Qin L
    J Orthop Res; 2013 Jan; 31(1):164-72. PubMed ID: 22807243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrating silicon/zinc dual elements with PLGA microspheres in calcium phosphate cement scaffolds synergistically enhances bone regeneration.
    Liang W; Gao M; Lou J; Bai Y; Zhang J; Lu T; Sun X; Ye J; Li B; Sun L; Heng BC; Zhang X; Deng X
    J Mater Chem B; 2020 Apr; 8(15):3038-3049. PubMed ID: 32196049
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Towards the Clinical Translation of 3D PLGA/β-TCP/Mg Composite Scaffold for Cranial Bone Regeneration.
    Zhou Y; Hu J; Li B; Xia J; Zhang T; Xiong Z
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits.
    Lai Y; Cao H; Wang X; Chen S; Zhang M; Wang N; Yao Z; Dai Y; Xie X; Zhang P; Yao X; Qin L
    Biomaterials; 2018 Jan; 153():1-13. PubMed ID: 29096397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioactive PLGA/tricalcium phosphate scaffolds incorporating phytomolecule icaritin developed for calvarial defect repair in rat model.
    Shi GS; Li YY; Luo YP; Jin JF; Sun YX; Zheng LZ; Lai YX; Li L; Fu GH; Qin L; Chen SH
    J Orthop Translat; 2020 Sep; 24():112-120. PubMed ID: 32775203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L
    Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering.
    Fahimipour F; Rasoulianboroujeni M; Dashtimoghadam E; Khoshroo K; Tahriri M; Bastami F; Lobner D; Tayebi L
    Dent Mater; 2017 Nov; 33(11):1205-1216. PubMed ID: 28882369
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study.
    Chen SH; Wang XL; Xie XH; Zheng LZ; Yao D; Wang DP; Leng Y; Zhang G; Qin L
    Acta Biomater; 2012 Aug; 8(8):3128-37. PubMed ID: 22543006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D-plotted zinc silicate/β-tricalcium phosphate ceramic scaffolds enable fast osteogenesis by activating the p38 signaling pathway.
    Yuan X; Lu T; He F; Wu T; Wang X; Ye J
    J Mater Chem B; 2022 Nov; 10(46):9639-9653. PubMed ID: 36377518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of 3D printed PCL/PLGA/β-TCP versus collagen membranes for guided bone regeneration in a beagle implant model.
    Won JY; Park CY; Bae JH; Ahn G; Kim C; Lim DH; Cho DW; Yun WS; Shim JH; Huh JB
    Biomed Mater; 2016 Oct; 11(5):055013. PubMed ID: 27716630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin.
    Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L
    J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds.
    Sarkar N; Bose S
    Acta Biomater; 2020 Sep; 114():407-420. PubMed ID: 32652224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model.
    Ge Z; Tian X; Heng BC; Fan V; Yeo JF; Cao T
    Biomed Mater; 2009 Apr; 4(2):021001. PubMed ID: 19208943
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D Printed Multifunctional Biomimetic Bone Scaffold Combined with TP-Mg Nanoparticles for the Infectious Bone Defects Repair.
    Hu X; Chen J; Yang S; Zhang Z; Wu H; He J; Qin L; Cao J; Xiong C; Li K; Liu X; Qian Z
    Small; 2024 May; ():e2403681. PubMed ID: 38804867
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects.
    Haberstroh K; Ritter K; Kuschnierz J; Bormann KH; Kaps C; Carvalho C; Mülhaupt R; Sittinger M; Gellrich NC
    J Biomed Mater Res B Appl Biomater; 2010 May; 93(2):520-30. PubMed ID: 20225216
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication and Evaluation of PCL/PLGA/β-TCP Spiral-Structured Scaffolds for Bone Tissue Engineering.
    Wang W; Zhou X; Wang H; Zhou G; Yu X
    Bioengineering (Basel); 2024 Jul; 11(7):. PubMed ID: 39061814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PLGA/β-TCP composite scaffold incorporating salvianolic acid B promotes bone fusion by angiogenesis and osteogenesis in a rat spinal fusion model.
    Lin S; Cui L; Chen G; Huang J; Yang Y; Zou K; Lai Y; Wang X; Zou L; Wu T; Cheng JCY; Li G; Wei B; Lee WYW
    Biomaterials; 2019 Mar; 196():109-121. PubMed ID: 29655516
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized β-tricalcium phosphate scaffold.
    Cao L; Duan PG; Wang HR; Li XL; Yuan FL; Fan ZY; Li SM; Dong J
    Int J Nanomedicine; 2012; 7():5881-8. PubMed ID: 23226019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.