These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36633123)

  • 1. Fluid manipulation
    Wang X; Bai H; Li Z; Cao M
    Soft Matter; 2023 Jan; 19(4):588-608. PubMed ID: 36633123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired functional SLIPSs and wettability gradient surfaces and their synergistic cooperation and opportunities for enhanced condensate and fluid transport.
    Lv F; Zhao F; Cheng D; Dong Z; Jia H; Xiao X; Orejon D
    Adv Colloid Interface Sci; 2022 Jan; 299():102564. PubMed ID: 34861513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-Change Slippery Liquid-Infused Porous Surfaces with Thermo-Responsive Wetting and Shedding States.
    Gulfam R; Orejon D; Choi CH; Zhang P
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34306-34316. PubMed ID: 32597163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. WO
    Fan H; Guo Z
    J Colloid Interface Sci; 2021 Jun; 591():418-428. PubMed ID: 33631529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life Span of Slippery Lubricant Infused Surfaces.
    Hoque MJ; Sett S; Yan X; Liu D; Rabbi KF; Qiu H; Qureshi M; Barac G; Bolton L; Miljkovic N
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4598-4611. PubMed ID: 35018774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bioinspired Slippery Surface with Stable Lubricant Impregnation for Efficient Water Harvesting.
    Feng R; Xu C; Song F; Wang F; Wang XL; Wang YZ
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12373-12381. PubMed ID: 32048819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable Broadband Optical Transparency and Wettability Switching of Temperature-Activated Solid/Liquid-Infused Nanofibrous Membranes.
    Manabe K; Matsubayashi T; Tenjimbayashi M; Moriya T; Tsuge Y; Kyung KH; Shiratori S
    ACS Nano; 2016 Oct; 10(10):9387-9396. PubMed ID: 27662461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust Slippery Liquid-Infused Porous Network Surfaces for Enhanced Anti-icing/Deicing Performance.
    Liu C; Li Y; Lu C; Liu Y; Feng S; Liu Y
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):25471-25477. PubMed ID: 32379411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Key Factors Affecting Durable Anti-Icing of Slippery Surfaces: Pore Size and Porosity.
    Xiang H; Yuan Y; Zhang C; Dai X; Zhu T; Song L; Gai Y; Liao R
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3599-3612. PubMed ID: 36579670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-Icing Mechanism for a Novel Slippery Aluminum Stranded Conductor.
    Xiang H; Yuan Y; Zhu T; Dai X; Zhang C; Gai Y; Liao R
    ACS Appl Mater Interfaces; 2023 Jul; 15(28):34215-34229. PubMed ID: 37413794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid-Infused Surfaces: A Review of Theory, Design, and Applications.
    Villegas M; Zhang Y; Abu Jarad N; Soleymani L; Didar TF
    ACS Nano; 2019 Aug; 13(8):8517-8536. PubMed ID: 31373794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: Promise versus Reality.
    Sett S; Yan X; Barac G; Bolton LW; Miljkovic N
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36400-36408. PubMed ID: 28950702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired Slippery Surfaces for Liquid Manipulation from Tiny Droplet to Bulk Fluid.
    Wang G; Ma F; Zhu L; Zhu P; Tang L; Hu H; Liu L; Li S; Zeng Z; Wang L; Xue Q
    Adv Mater; 2024 May; ():e2311489. PubMed ID: 38696759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: The Extent of Lubricant Miscibility.
    Sett S; Oh J; Cha H; Veriotti T; Bruno A; Yan X; Barac G; Bolton LW; Miljkovic N
    ACS Appl Mater Interfaces; 2021 May; 13(19):23121-23133. PubMed ID: 33949848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing Flexible but Tough Slippery Track for Underwater Gas Manipulation.
    Wang X; Bai H; Yang J; Li Z; Wu Y; Yu C; Jiang L; Cao M
    Small; 2021 Feb; 17(8):e2007803. PubMed ID: 33522147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoleophobic Slippery Lubricant-Infused Surfaces: Combining Two Extremes in the Same Surface.
    Dong Z; Schumann MF; Hokkanen MJ; Chang B; Welle A; Zhou Q; Ras RHA; Xu Z; Wegener M; Levkin PA
    Adv Mater; 2018 Nov; 30(45):e1803890. PubMed ID: 30160319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison between superhydrophobic surfaces (SHS) and slippery liquid-infused porous surfaces (SLIPS) in application.
    Wang C; Guo Z
    Nanoscale; 2020 Nov; 12(44):22398-22424. PubMed ID: 33174577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slippery Liquid-Infused Porous Surfaces on Aluminum for Corrosion Protection with Improved Self-Healing Ability.
    Sakuraba K; Kitano S; Kowalski D; Aoki Y; Habazaki H
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):45089-45096. PubMed ID: 34498462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multibioinspired slippery surfaces with wettable bump arrays for droplets pumping.
    Zhang X; Sun L; Wang Y; Bian F; Wang Y; Zhao Y
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20863-20868. PubMed ID: 31570600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lubricant-infused slippery surfaces: Facile fabrication, unique liquid repellence and antireflective properties.
    Li Q; Guo Z
    J Colloid Interface Sci; 2019 Feb; 536():507-515. PubMed ID: 30384056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.