These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36633218)

  • 1. Disulfide-Directed Multicyclic Peptide Libraries for the Discovery of Peptide Ligands and Drugs.
    Lu S; Fan S; Xiao S; Li J; Zhang S; Wu Y; Kong C; Zhuang J; Liu H; Zhao Y; Wu C
    J Am Chem Soc; 2023 Jan; 145(3):1964-1972. PubMed ID: 36633218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directed Disulfide Pairing and Folding of Peptides for the De Novo Development of Multicyclic Peptide Libraries.
    Lu S; Wu Y; Li J; Meng X; Hu C; Zhao Y; Wu C
    J Am Chem Soc; 2020 Sep; 142(38):16285-16291. PubMed ID: 32914969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De Novo Discovery of Cysteine Frameworks for Developing Multicyclic Peptide Libraries for Ligand Discovery.
    Li J; Liu H; Xiao S; Fan S; Cheng X; Wu C
    J Am Chem Soc; 2023 Dec; 145(51):28264-28275. PubMed ID: 38092662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Ribosomal Incorporation of Noncanonical Disulfide-Directing Motifs for the Development of Multicyclic Peptide Libraries.
    Dong H; Li J; Liu H; Lu S; Wu J; Zhang Y; Yin Y; Zhao Y; Wu C
    J Am Chem Soc; 2022 Mar; 144(11):5116-5125. PubMed ID: 35289603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Twin disulfides for orthogonal disulfide pairing and the directed folding of multicyclic peptides.
    Wu C; Leroux JC; Gauthier MA
    Nat Chem; 2012 Dec; 4(12):1044-9. PubMed ID: 23174986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Synthesis of Disulfide-Rich Peptides with Orthogonal Disulfide Pairing Motifs.
    Huang Z; Wu Y; Dong H; Zhao Y; Wu C
    J Org Chem; 2020 Sep; 85(17):11475-11481. PubMed ID: 32786636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthogonal Cysteine-Penicillamine Disulfide Pairing for Directing the Oxidative Folding of Peptides.
    Zheng Y; Zhai L; Zhao Y; Wu C
    J Am Chem Soc; 2015 Dec; 137(48):15094-7. PubMed ID: 26588670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clustering of disulfide-rich peptides provides scaffolds for hit discovery by phage display: application to interleukin-23.
    Barkan DT; Cheng XL; Celino H; Tran TT; Bhandari A; Craik CS; Sali A; Smythe ML
    BMC Bioinformatics; 2016 Nov; 17(1):481. PubMed ID: 27881076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicyclic Peptides as Scaffolds for the Development of Tumor Targeting Agents.
    Loktev A; Haberkorn U; Mier W
    Curr Med Chem; 2017; 24(20):2141-2155. PubMed ID: 28302013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ordered and Isomerically Stable Bicyclic Peptide Scaffolds Constrained through Cystine Bridges and Proline Turns.
    Lin P; Yao H; Zha J; Zhao Y; Wu C
    Chembiochem; 2019 Jun; 20(12):1514-1518. PubMed ID: 30770638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-guided design of CPPC-paired disulfide-rich peptide libraries for ligand and drug discovery.
    Wu Y; Fan S; Dong M; Li J; Kong C; Zhuang J; Meng X; Lu S; Zhao Y; Wu C
    Chem Sci; 2022 Jul; 13(26):7780-7789. PubMed ID: 35865895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Synthesis of Cross-Link-Dense Peptides by Manipulating Regioselective Bisthioether Cross-Linking and Orthogonal Disulfide Pairing.
    Dong H; Meng X; Zheng X; Cheng X; Zheng Y; Zhao Y; Wu C
    J Org Chem; 2019 May; 84(9):5187-5194. PubMed ID: 30895794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo design and directed folding of disulfide-bridged peptide heterodimers.
    Yao S; Moyer A; Zheng Y; Shen Y; Meng X; Yuan C; Zhao Y; Yao H; Baker D; Wu C
    Nat Commun; 2022 Mar; 13(1):1539. PubMed ID: 35318337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evolution-inspired strategy to design disulfide-rich peptides tolerant to extensive sequence manipulation.
    Zha J; Li J; Fan S; Duan Z; Zhao Y; Wu C
    Chem Sci; 2021 Sep; 12(34):11464-11472. PubMed ID: 34567500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing scaffolds of peptides for phage display libraries.
    Uchiyama F; Tanaka Y; Minari Y; Tokui N
    J Biosci Bioeng; 2005 May; 99(5):448-56. PubMed ID: 16233816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ligand-based peptide design and combinatorial peptide libraries to target G protein-coupled receptors.
    Gruber CW; Muttenthaler M; Freissmuth M
    Curr Pharm Des; 2010; 16(28):3071-88. PubMed ID: 20687879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of affinity peptides from natural protein ligands: A study of the cardiac troponin complex.
    Chandra D; Sankalia N; Arcibal I; Banta S; Cropek D; Karande P
    Biopolymers; 2014 Jan; 102(1):97-106. PubMed ID: 24436041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides.
    Goto Y; Suga H
    Acc Chem Res; 2021 Sep; 54(18):3604-3617. PubMed ID: 34505781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural space of intramolecular peptide disulfides: Analysis of peptide toxins retrieved from venomous peptide databases.
    Govindu PCV; Chakraborty P; Dutta A; Gowd KH
    Comput Biol Chem; 2017 Jun; 68():194-203. PubMed ID: 28365475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo discovery of bioactive cyclic peptides using bacterial display and flow cytometry.
    Shivange AV; Daugherty PS
    Methods Mol Biol; 2015; 1248():139-53. PubMed ID: 25616331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.