BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 36633272)

  • 1. Success probability of high-affinity DNA aptamer generation by genetic alphabet expansion.
    Kimoto M; Tan HP; Tan YS; Mislan NABM; Hirao I
    Philos Trans R Soc Lond B Biol Sci; 2023 Feb; 378(1871):20220031. PubMed ID: 36633272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA Aptamer Generation by Genetic Alphabet Expansion SELEX (ExSELEX) Using an Unnatural Base Pair System.
    Kimoto M; Matsunaga K; Hirao I
    Methods Mol Biol; 2016; 1380():47-60. PubMed ID: 26552815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-affinity five/six-letter DNA aptamers with superior specificity enabling the detection of dengue NS1 protein variants beyond the serotype identification.
    Matsunaga KI; Kimoto M; Lim VW; Tan HP; Wong YQ; Sun W; Vasoo S; Leo YS; Hirao I
    Nucleic Acids Res; 2021 Nov; 49(20):11407-11424. PubMed ID: 34169309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method.
    Hirao I; Kimoto M; Lee KH
    Biochimie; 2018 Feb; 145():15-21. PubMed ID: 28916151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Affinity DNA Aptamer Generation Targeting von Willebrand Factor A1-Domain by Genetic Alphabet Expansion for Systematic Evolution of Ligands by Exponential Enrichment Using Two Types of Libraries Composed of Five Different Bases.
    Matsunaga KI; Kimoto M; Hirao I
    J Am Chem Soc; 2017 Jan; 139(1):324-334. PubMed ID: 27966933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolving Aptamers with Unnatural Base Pairs.
    Kimoto M; Matsunaga KI; Hirao I
    Curr Protoc Chem Biol; 2017 Dec; 9(4):315-339. PubMed ID: 29241296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-ExSELEX stabilization of an unnatural-base DNA aptamer targeting VEGF165 toward pharmaceutical applications.
    Kimoto M; Nakamura M; Hirao I
    Nucleic Acids Res; 2016 Sep; 44(15):7487-94. PubMed ID: 27387284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Customised nucleic acid libraries for enhanced aptamer selection and performance.
    Pfeiffer F; Rosenthal M; Siegl J; Ewers J; Mayer G
    Curr Opin Biotechnol; 2017 Dec; 48():111-118. PubMed ID: 28437710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA Sequencing Method Including Unnatural Bases for DNA Aptamer Generation by Genetic Alphabet Expansion.
    Hamashima K; Soong YT; Matsunaga KI; Kimoto M; Hirao I
    ACS Synth Biol; 2019 Jun; 8(6):1401-1410. PubMed ID: 30995835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of high-affinity DNA aptamers using an expanded genetic alphabet.
    Kimoto M; Yamashige R; Matsunaga K; Yokoyama S; Hirao I
    Nat Biotechnol; 2013 May; 31(5):453-7. PubMed ID: 23563318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development, screening, and analysis of DNA aptamer libraries potentially useful for diagnosis and passive immunity of arboviruses.
    Bruno JG; Carrillo MP; Richarte AM; Phillips T; Andrews C; Lee JS
    BMC Res Notes; 2012 Nov; 5():633. PubMed ID: 23148669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Aptamers from A Primer-Free Randomized ssDNA Library Using Magnetic-Assisted Rapid Aptamer Selection.
    Tsao SM; Lai JC; Horng HE; Liu TC; Hong CY
    Sci Rep; 2017 Apr; 7():45478. PubMed ID: 28367958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple method for eliminating fixed-region interference of aptamer binding during SELEX.
    Ouellet E; Lagally ET; Cheung KC; Haynes CA
    Biotechnol Bioeng; 2014 Nov; 111(11):2265-79. PubMed ID: 24895227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for Improving Aptamer Binding Affinity.
    Hasegawa H; Savory N; Abe K; Ikebukuro K
    Molecules; 2016 Mar; 21(4):421. PubMed ID: 27043498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Efficient screening for 8-oxoguanine DNA glycosylase binding aptamers via capillary electrophoresis].
    Han S; Zhao L; Yang G; Qu F
    Se Pu; 2021 Jul; 39(7):721-729. PubMed ID: 34227370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effects of SELEX Conditions on the Resultant Aptamer Pools in the Selection of Aptamers Binding to Bacterial Cells.
    Hamula CL; Peng H; Wang Z; Newbigging AM; Tyrrell GJ; Li XF; Le XC
    J Mol Evol; 2015 Dec; 81(5-6):194-209. PubMed ID: 26538121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advancements in Aptamer Discovery Technologies.
    Gotrik MR; Feagin TA; Csordas AT; Nakamoto MA; Soh HT
    Acc Chem Res; 2016 Sep; 49(9):1903-10. PubMed ID: 27526193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screening of DNA Signaling Aptamer from Multiple Candidates Obtained from SELEX with Next-generation Sequencing.
    Yoshitomi T; Wayama F; Kimura K; Wakui K; Furusho H; Yoshimoto K
    Anal Sci; 2019; 35(1):113-116. PubMed ID: 30626772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Architecture of high-affinity unnatural-base DNA aptamers toward pharmaceutical applications.
    Matsunaga K; Kimoto M; Hanson C; Sanford M; Young HA; Hirao I
    Sci Rep; 2015 Dec; 5():18478. PubMed ID: 26690672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.