These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 3663328)
1. Formation of 4-ethoxy-4'-nitrosodiphenylamine in the reaction of the phenacetin metabolite 4-nitrosophenetol with glutathione. Klehr H; Eyer P; Schäfer W Biol Chem Hoppe Seyler; 1987 Aug; 368(8):895-902. PubMed ID: 3663328 [TBL] [Abstract][Full Text] [Related]
2. Reaction of mutagenic phenacetin metabolites with glutathione and DNA. Possible implications for toxicity. Mulder GJ; Kadlubar FF; Mays JB; Hinson JA Mol Pharmacol; 1984 Sep; 26(2):342-7. PubMed ID: 6482879 [TBL] [Abstract][Full Text] [Related]
3. Effects of the phenacetin metabolite 4-nitrosophenetol on the glutathione status and the transport of glutathione S-conjugates in human red cells. Gallemann D; Eyer P Biol Chem Hoppe Seyler; 1993 Jan; 374(1):51-60. PubMed ID: 8439397 [TBL] [Abstract][Full Text] [Related]
4. Effects of the phenacetin metabolite 4-nitrosophenetol on glycolysis and pentose phosphate pathway in human red cells. Gallemann D; Eyer P Biol Chem Hoppe Seyler; 1993 Jan; 374(1):37-49. PubMed ID: 8439396 [TBL] [Abstract][Full Text] [Related]
5. Additional pathways of S-conjugate formation during the interaction of thiols with nitrosoarenes bearing pi-donating substituents. Gallemann D; Eyer P Environ Health Perspect; 1994 Oct; 102 Suppl 6(Suppl 6):137-42. PubMed ID: 7889836 [TBL] [Abstract][Full Text] [Related]
6. Additional pathways of S-conjugate formation during interaction of 4-nitrosophenetole with glutathione. Gallemann D; Greif A; Eyer P; Wagner HU; Sonnenbichler J; Sonnenbichler I; Schäfer W; Buhrow I Chem Res Toxicol; 1998 Dec; 11(12):1411-22. PubMed ID: 9860482 [TBL] [Abstract][Full Text] [Related]
7. Mutagenicity of the phenacetin metabolites: N-hydroxy-p-phenetidine and nitrosophenetol in S. typhimurium TA100 and derivatives deficient in nitroreductase or O-acetylase: probes for testing intrabacterial metabolic activation. McCoy EC; Rosenkranz HS; Bartsch H Mutat Res; 1986 Apr; 173(4):245-50. PubMed ID: 3513003 [TBL] [Abstract][Full Text] [Related]
8. The role of N-hydroxyphenetidine in phenacetin-induced hemolytic anemia. Jensen CB; Jollow DJ Toxicol Appl Pharmacol; 1991 Oct; 111(1):1-12. PubMed ID: 1949026 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of glutathione excretion, bile flow, and alterations of the glutathione status by 4-nitrosophenetol during perfusion of rat livers. Eyer P; Kampffmeyer H Chem Biol Interact; 1982 Nov; 42(2):209-23. PubMed ID: 7151229 [TBL] [Abstract][Full Text] [Related]
10. Covalent binding of the phenacetin metabolite p-nitrosophenetole to protein. Hinson JA; Mays JB J Pharmacol Exp Ther; 1986 Jul; 238(1):106-12. PubMed ID: 3723393 [TBL] [Abstract][Full Text] [Related]
11. On the mechanism of reactions of nitrosoarenes with thiols. Formation of a common intermediate "semimercaptal". Klehr H; Eyer P; Schäfer W Biol Chem Hoppe Seyler; 1985 Aug; 366(8):755-60. PubMed ID: 4063076 [TBL] [Abstract][Full Text] [Related]
12. The oxidation of p-phenetidine by horseradish peroxidase and prostaglandin synthase and the fate of glutathione during such oxidations. Ross D; Larsson R; Andersson B; Nilsson U; Lindquist T; Lindeke B; Moldéus P Biochem Pharmacol; 1985 Feb; 34(3):343-51. PubMed ID: 2982385 [TBL] [Abstract][Full Text] [Related]
13. The metabolism of N-hydroxyphenacetin in vitro and in vivo. Fischbach T; Lenk W Xenobiotica; 1985 Nov; 15(11):915-27. PubMed ID: 4082632 [TBL] [Abstract][Full Text] [Related]
14. Metabolism of phenacetin and N-hydroxyphenacetin in isolated rat hepatocytes. McLean S Naunyn Schmiedebergs Arch Pharmacol; 1978 Nov; 305(2):173-80. PubMed ID: 732893 [TBL] [Abstract][Full Text] [Related]
15. Formation of 4,4-dialkoxycyclohexa-2,5-dienone N-(thiol-S-yl)imine during reaction of 4-alkoxynitrosobenzenes with thiols in alcoholic solvents. Gallemann D; Greif A; Eyer P; Dasenbrock J; Wimmer E; Sonnenbichler J; Sonnenbichler I; Schäfer W; Buhrow I Chem Res Toxicol; 1998 Dec; 11(12):1423-33. PubMed ID: 9860483 [TBL] [Abstract][Full Text] [Related]
16. Metabolic activation by human arylacetamide deacetylase, CYP2E1, and CYP1A2 causes phenacetin-induced methemoglobinemia. Kobayashi Y; Fukami T; Higuchi R; Nakajima M; Yokoi T Biochem Pharmacol; 2012 Nov; 84(9):1196-206. PubMed ID: 22940574 [TBL] [Abstract][Full Text] [Related]
17. Metabolic activation of phenacetin and phenetidine by several forms of cytochrome P-450 purified from liver microsomes of rats and hamsters. Nohmi T; Mizokami K; Kawano S; Fukuhara M; Ishidate M Jpn J Cancer Res; 1987 Feb; 78(2):153-61. PubMed ID: 3104258 [TBL] [Abstract][Full Text] [Related]
18. Characterization and mechanism of formation of reactive products formed during peroxidase-catalyzed oxidation of p-phenetidine. Trapping of reactive species by reduced glutathione and butylated hydroxyanisole. Ross D; Larsson R; Norbeck K; Ryhage R; Moldéus P Mol Pharmacol; 1985 Feb; 27(2):277-86. PubMed ID: 3969071 [TBL] [Abstract][Full Text] [Related]
19. Differences in the reactions of isomeric ortho- and para-aminophenols with hemoglobin. Eckert KG; Eyer P Biochem Pharmacol; 1983 Mar; 32(6):1019-27. PubMed ID: 6838648 [TBL] [Abstract][Full Text] [Related]
20. Suppression of phenacetin-induced methemoglobinemia by diethyldithiocarbamate and carbon disulfide and its relation to phenacetin metabolism in mice. Nakayama N; Masuda Y J Pharmacobiodyn; 1985 Oct; 8(10):868-76. PubMed ID: 3005542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]