These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36633363)

  • 1. PRR14 organizes H3K9me3-modified heterochromatin at the nuclear lamina.
    Kiseleva AA; Cheng YC; Smith CL; Katz RA; Poleshko A
    Nucleus; 2023 Dec; 14(1):2165602. PubMed ID: 36633363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The human protein PRR14 tethers heterochromatin to the nuclear lamina during interphase and mitotic exit.
    Poleshko A; Mansfield KM; Burlingame CC; Andrake MD; Shah NR; Katz RA
    Cell Rep; 2013 Oct; 5(2):292-301. PubMed ID: 24209742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The PRR14 heterochromatin tether encodes modular domains that mediate and regulate nuclear lamina targeting.
    Dunlevy KL; Medvedeva V; Wilson JE; Hoque M; Pellegrin T; Maynard A; Kremp MM; Wasserman JS; Poleshko A; Katz RA
    J Cell Sci; 2020 May; 133(10):. PubMed ID: 32317397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specifying peripheral heterochromatin during nuclear lamina reassembly.
    Poleshko A; Katz RA
    Nucleus; 2014; 5(1):32-9. PubMed ID: 24637393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The secret life of chromatin tethers.
    Kiseleva AA; Poleshko A
    FEBS Lett; 2023 Nov; 597(22):2782-2790. PubMed ID: 37339933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription-independent TFIIIC-bound sites cluster near heterochromatin boundaries within lamina-associated domains in C. elegans.
    Stutzman AV; Liang AS; Beilinson V; Ikegami K
    Epigenetics Chromatin; 2020 Jan; 13(1):1. PubMed ID: 31918747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MacroH2A1 associates with nuclear lamina and maintains chromatin architecture in mouse liver cells.
    Fu Y; Lv P; Yan G; Fan H; Cheng L; Zhang F; Dang Y; Wu H; Wen B
    Sci Rep; 2015 Nov; 5():17186. PubMed ID: 26603343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choreography of lamina-associated domains: structure meets dynamics.
    Alagna NS; Thomas TI; Wilson KL; Reddy KL
    FEBS Lett; 2023 Nov; 597(22):2806-2822. PubMed ID: 37953467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Nuclear Lamina as an Organizer of Chromosome Architecture.
    Shevelyov YY; Ulianov SV
    Cells; 2019 Feb; 8(2):. PubMed ID: 30744037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Basis of Heterochromatin Formation by Human HP1.
    Machida S; Takizawa Y; Ishimaru M; Sugita Y; Sekine S; Nakayama JI; Wolf M; Kurumizaka H
    Mol Cell; 2018 Feb; 69(3):385-397.e8. PubMed ID: 29336876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the micro-proteome of the nuclear lamina and lamina-associated domains.
    Wong X; Cutler JA; Hoskins VE; Gordon M; Madugundu AK; Pandey A; Reddy KL
    Life Sci Alliance; 2021 May; 4(5):. PubMed ID: 33758005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pericentric heterochromatin generated by HP1 protein interaction-defective histone methyltransferase Suv39h1.
    Muramatsu D; Singh PB; Kimura H; Tachibana M; Shinkai Y
    J Biol Chem; 2013 Aug; 288(35):25285-25296. PubMed ID: 23836914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin at the nuclear periphery and the regulation of genome functions.
    LemaƮtre C; Bickmore WA
    Histochem Cell Biol; 2015 Aug; 144(2):111-22. PubMed ID: 26170147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterochromatin drives compartmentalization of inverted and conventional nuclei.
    Falk M; Feodorova Y; Naumova N; Imakaev M; Lajoie BR; Leonhardt H; Joffe B; Dekker J; Fudenberg G; Solovei I; Mirny LA
    Nature; 2019 Jun; 570(7761):395-399. PubMed ID: 31168090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of heterochromatin subnuclear localization.
    Towbin BD; Gonzalez-Sandoval A; Gasser SM
    Trends Biochem Sci; 2013 Jul; 38(7):356-63. PubMed ID: 23746617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic regulation of effector protein binding to histone modifications: the biology of HP1 switching.
    Dormann HL; Tseng BS; Allis CD; Funabiki H; Fischle W
    Cell Cycle; 2006 Dec; 5(24):2842-51. PubMed ID: 17172865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of Chromatin with the Nuclear Lamina and Nuclear Pore Complexes.
    Shevelyov YY
    Int J Mol Sci; 2023 Oct; 24(21):. PubMed ID: 37958755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maintenance of stable heterochromatin domains by dynamic HP1 binding.
    Cheutin T; McNairn AJ; Jenuwein T; Gilbert DM; Singh PB; Misteli T
    Science; 2003 Jan; 299(5607):721-5. PubMed ID: 12560555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel role of PRR14 in the regulation of skeletal myogenesis.
    Yang M; Yuan ZM
    Cell Death Dis; 2015 Apr; 6(4):e1734. PubMed ID: 25906157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HP1 recruits activity-dependent neuroprotective protein to H3K9me3 marked pericentromeric heterochromatin for silencing of major satellite repeats.
    Mosch K; Franz H; Soeroes S; Singh PB; Fischle W
    PLoS One; 2011 Jan; 6(1):e15894. PubMed ID: 21267468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.