BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36633566)

  • 1. Ligands-induced open-close conformational change during DapE catalysis: Insights from molecular dynamics simulations.
    Muduli S; Mishra S
    Proteins; 2023 Jun; 91(6):781-797. PubMed ID: 36633566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and mechanistic insight into substrate binding from the conformational dynamics in apo and substrate-bound DapE enzyme.
    Dutta D; Mishra S
    Phys Chem Chem Phys; 2016 Jan; 18(3):1671-80. PubMed ID: 26674000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational Dynamics in
    Muduli S; Karmakar S; Mishra S
    J Chem Inf Model; 2024 May; 64(10):4250-4262. PubMed ID: 38701175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-induced structural changes analysis of ribose-binding protein as studied by molecular dynamics simulations.
    Li H; Cao Z; Hu G; Zhao L; Wang C; Wang J
    Technol Health Care; 2021; 29(S1):103-114. PubMed ID: 33682750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and Function in Homodimeric Enzymes: Simulations of Cooperative and Independent Functional Motions.
    Wells SA; van der Kamp MW; McGeagh JD; Mulholland AJ
    PLoS One; 2015; 10(8):e0133372. PubMed ID: 26241964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dimerization domain in DapE enzymes is required for catalysis.
    Nocek B; Starus A; Makowska-Grzyska M; Gutierrez B; Sanchez S; Jedrzejczak R; Mack JC; Olsen KW; Joachimiak A; Holz RC
    PLoS One; 2014; 9(5):e93593. PubMed ID: 24806882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The three-dimensional structure of DapE from Enterococcus faecium reveals new insights into DapE/ArgE subfamily ligand specificity.
    Terrazas-López M; González-Segura L; Díaz-Vilchis A; Aguirre-Mendez KA; Lobo-Galo N; Martínez-Martínez A; Díaz-Sánchez ÁG
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132281. PubMed ID: 38740150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-Resolution 1.3 Å Crystal Structure, Inhibition by Sulfate, and Molecular Dynamics of the Bacterial Enzyme DapE.
    Kochert M; Nocek BP; Habeeb Mohammad TS; Gild E; Lovato K; Heath TK; Holz RC; Olsen KW; Becker DP
    Biochemistry; 2021 Mar; 60(12):908-917. PubMed ID: 33721990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active Site Dynamics in Substrate Hydrolysis Catalyzed by DapE Enzyme and Its Mutants from Hybrid QM/MM-Molecular Dynamics Simulation.
    Dutta D; Mishra S
    J Phys Chem B; 2017 Jul; 121(29):7075-7085. PubMed ID: 28664734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-Induced Conformational and Dynamical Changes in a GT-B Glycosyltransferase: Molecular Dynamics Simulations of Heptosyltransferase I Complexes.
    Hassan BA; Milicaj J; Ramirez-Mondragon CA; Sham YY; Taylor EA
    J Chem Inf Model; 2022 Jan; 62(2):324-339. PubMed ID: 34967618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved Conformational Hierarchy across Functionally Divergent Glycosyltransferases of the GT-B Structural Superfamily as Determined from Microsecond Molecular Dynamics.
    Ramirez-Mondragon CA; Nguyen ME; Milicaj J; Hassan BA; Tucci FJ; Muthyala R; Gao J; Taylor EA; Sham YY
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33924837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand binding and global adaptation of the GlnPQ substrate binding domain 2 revealed by molecular dynamics simulations.
    Kienlein M; Zacharias M
    Protein Sci; 2020 Dec; 29(12):2482-2494. PubMed ID: 33070437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for ligand binding to an enzyme by a conformational selection pathway.
    Kovermann M; Grundström C; Sauer-Eriksson AE; Sauer UH; Wolf-Watz M
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6298-6303. PubMed ID: 28559350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale conformational dynamics of the HIV-1 integrase core domain and its catalytic loop mutants.
    Lee MC; Deng J; Briggs JM; Duan Y
    Biophys J; 2005 May; 88(5):3133-46. PubMed ID: 15731379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of the Escherichia coli HPPK apo-enzyme reveal a network of conformational transitions.
    Gao K; He H; Yang M; Yan H
    Biochemistry; 2015 Nov; 54(44):6734-42. PubMed ID: 26492157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions.
    Ojeda-May P; Mushtaq AU; Rogne P; Verma A; Ovchinnikov V; Grundström C; Dulko-Smith B; Sauer UH; Wolf-Watz M; Nam K
    Biochemistry; 2021 Jul; 60(28):2246-2258. PubMed ID: 34250801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational studies of tryptophanyl-tRNA synthetase: activation of ATP by induced-fit.
    Kapustina M; Carter CW
    J Mol Biol; 2006 Oct; 362(5):1159-80. PubMed ID: 16949606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational dynamics of a multidomain protein by neutron scattering and computational analysis.
    Nakagawa H; Saio T; Nagao M; Inoue R; Sugiyama M; Ajito S; Tominaga T; Kawakita Y
    Biophys J; 2021 Aug; 120(16):3341-3354. PubMed ID: 34242590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular determinants of epidermal growth factor binding: a molecular dynamics study.
    Sanders JM; Wampole ME; Thakur ML; Wickstrom E
    PLoS One; 2013; 8(1):e54136. PubMed ID: 23382875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Many local motions cooperate to produce the adenylate kinase conformational transition.
    Daily MD; Phillips GN; Cui Q
    J Mol Biol; 2010 Jul; 400(3):618-31. PubMed ID: 20471396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.