These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36633566)

  • 21. Dynamics of the active site loops in catalyzing aminoacylation reaction in seryl and histidyl tRNA synthetases.
    Dutta S; Kundu S; Saha A; Nandi N
    J Biomol Struct Dyn; 2018 Mar; 36(4):878-892. PubMed ID: 28317434
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational change and ligand binding in the aristolochene synthase catalytic cycle.
    van der Kamp MW; Sirirak J; Żurek J; Allemann RK; Mulholland AJ
    Biochemistry; 2013 Nov; 52(45):8094-105. PubMed ID: 24106830
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Domain motions and the open-to-closed conformational transition of an enzyme: a normal mode analysis of S-adenosyl-L-homocysteine hydrolase.
    Wang M; Borchardt RT; Schowen RL; Kuczera K
    Biochemistry; 2005 May; 44(19):7228-39. PubMed ID: 15882061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate-induced conformational changes and dynamics of UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase-2.
    Milac AL; Buchete NV; Fritz TA; Hummer G; Tabak LA
    J Mol Biol; 2007 Oct; 373(2):439-51. PubMed ID: 17850816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coupling between catalytic loop motions and enzyme global dynamics.
    Kurkcuoglu Z; Bakan A; Kocaman D; Bahar I; Doruker P
    PLoS Comput Biol; 2012; 8(9):e1002705. PubMed ID: 23028297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Helicobacter pylori purine nucleoside phosphorylase shows new distribution patterns of open and closed active site conformations and unusual biochemical features.
    Narczyk M; Bertoša B; Papa L; Vuković V; Leščić Ašler I; Wielgus-Kutrowska B; Bzowska A; Luić M; Štefanić Z
    FEBS J; 2018 Apr; 285(7):1305-1325. PubMed ID: 29430816
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of Repeated Conformational Transitions in Substrate Binding of Adenylate Kinase.
    Lu J; Scheerer D; Haran G; Li W; Wang W
    J Phys Chem B; 2022 Oct; 126(41):8188-8201. PubMed ID: 36222098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In silico approach towards identification of potential inhibitors of Helicobacter pylori DapE.
    Mandal RS; Das S
    J Biomol Struct Dyn; 2015; 33(7):1460-73. PubMed ID: 25204745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of a ligand-induced conformational change in the catalytic core of Cdc25A.
    Kolmodin K; Aqvist J
    FEBS Lett; 2000 Jan; 465(1):8-11. PubMed ID: 10620697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular basis of ligand recognition by OASS from E. histolytica: insights from structural and molecular dynamics simulation studies.
    Raj I; Mazumder M; Gourinath S
    Biochim Biophys Acta; 2013 Oct; 1830(10):4573-83. PubMed ID: 23747298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elucidation of the conformational free energy landscape in H.pylori LuxS and its implications to catalysis.
    Bhattacharyya M; Vishveshwara S
    BMC Struct Biol; 2010 Aug; 10():27. PubMed ID: 20704697
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Substrate Binding Specifically Modulates Domain Arrangements in Adenylate Kinase.
    Zeller F; Zacharias M
    Biophys J; 2015 Nov; 109(9):1978-85. PubMed ID: 26536274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short-time dynamics of pH-dependent conformation and substrate binding in the active site of beta-glucosidases: A computational study.
    Flannelly DF; Aoki TG; Aristilde L
    J Struct Biol; 2015 Sep; 191(3):352-64. PubMed ID: 26160737
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular Dynamics Simulations of Ligand-Induced Flap Conformational Changes in Cathepsin-D-A Comparative Study.
    Arodola OA; Soliman ME
    J Cell Biochem; 2016 Nov; 117(11):2643-57. PubMed ID: 27038253
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unraveling the Coupling between Conformational Changes and Ligand Binding in Ribose Binding Protein Using Multiscale Molecular Dynamics and Free-Energy Calculations.
    Ren W; Dokainish HM; Shinobu A; Oshima H; Sugita Y
    J Phys Chem B; 2021 Mar; 125(11):2898-2909. PubMed ID: 33728914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational plasticity of an enzyme during catalysis: intricate coupling between cyclophilin A dynamics and substrate turnover.
    McGowan LC; Hamelberg D
    Biophys J; 2013 Jan; 104(1):216-26. PubMed ID: 23332074
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An enhanced molecular dynamics study of HPPK-ATP conformation space exploration and ATP binding to HPPK.
    Su L; Cukier RI
    J Phys Chem A; 2009 Mar; 113(10):2025-35. PubMed ID: 19191740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanism of the Conformational Change of the Protein Methyltransferase SMYD3: A Molecular Dynamics Simulation Study.
    Sun J; Li Z; Yang N
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281237
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiscale Approach for Computing Gated Ligand Binding from Molecular Dynamics and Brownian Dynamics Simulations.
    Sadiq SK; Muñiz Chicharro A; Friedrich P; Wade RC
    J Chem Theory Comput; 2021 Dec; 17(12):7912-7929. PubMed ID: 34739248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.