These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36633936)

  • 1. Phase Inversion of Pickering Emulsions Induced by Interfacial Electrostatic Attraction.
    Sun G; Guo T; Luo J; Liu R; Ngai T; Binks BP
    Langmuir; 2023 Jan; 39(4):1386-1393. PubMed ID: 36633936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring Pickering Double Emulsions by in Situ Particle Surface Modification.
    Tiwari M; Basavaraj MG; Dugyala VR
    Langmuir; 2023 Feb; 39(8):2911-2921. PubMed ID: 36722867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Double stabilization mechanism of O/W Pickering emulsions using cationic nanofibrillated cellulose.
    Silva CEP; Tam KC; Bernardes JS; Loh W
    J Colloid Interface Sci; 2020 Aug; 574():207-216. PubMed ID: 32315867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge-Reversible Surfactant-Induced Transformation Between Oil-in-Dispersion Emulsions and Pickering Emulsions.
    Jiang J; Yu S; Zhang W; Zhang H; Cui Z; Xia W; Binks BP
    Angew Chem Int Ed Engl; 2021 May; 60(21):11793-11798. PubMed ID: 33739584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of surfactant structure on the phase inversion of emulsions stabilized by mixtures of silica nanoparticles and cationic surfactant.
    Cui ZG; Yang LL; Cui YZ; Binks BP
    Langmuir; 2010 Apr; 26(7):4717-24. PubMed ID: 19950938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of Pickering Emulsions with Oppositely Charged Latex Particles: Influence of Various Parameters and Particle Arrangement around Droplets.
    Nallamilli T; Binks BP; Mani E; Basavaraj MG
    Langmuir; 2015 Oct; 31(41):11200-8. PubMed ID: 26411316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-in-Oil Pickering Emulsions Stabilized by Synergistic Particle-Particle Interactions.
    Zembyla M; Lazidis A; Murray BS; Sarkar A
    Langmuir; 2019 Oct; 35(40):13078-13089. PubMed ID: 31525933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study on the capacity of a range of food-grade particles to form stable O/W and W/O Pickering emulsions.
    Duffus LJ; Norton JE; Smith P; Norton IT; Spyropoulos F
    J Colloid Interface Sci; 2016 Jul; 473():9-21. PubMed ID: 27042820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of dispersion pH on the formation and stability of Pickering emulsions stabilized by layered double hydroxides particles.
    Yang F; Niu Q; Lan Q; Sun D
    J Colloid Interface Sci; 2007 Feb; 306(2):285-95. PubMed ID: 17113594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particles' Organization in Direct Oil-in-Water and Reverse Water-in-Oil Pickering Emulsions.
    Ramos DM; Sadtler V; Marchal P; Lemaitre C; Niepceron F; Benyahia L; Roques-Carmes T
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of double emulsions using hybrid polymer/silica particles: new pickering emulsifiers with adjustable surface wettability.
    Williams M; Warren NJ; Fielding LA; Armes SP; Verstraete P; Smets J
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20919-27. PubMed ID: 25380488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pickering emulsions stabilized by charged nanoparticles.
    Ridel L; Bolzinger MA; Gilon-Delepine N; Dugas PY; Chevalier Y
    Soft Matter; 2016 Sep; 12(36):7564-76. PubMed ID: 27510805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oil-in-water Pickering emulsion stabilization with oppositely charged polysaccharide particles: chitin nanocrystals/fucoidan complexes.
    Liu Z; Hu M; Zhang S; Jiang L; Xie F; Li Y
    J Sci Food Agric; 2021 May; 101(7):3003-3012. PubMed ID: 33205457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-in-oil high internal phase Pickering emulsions formed by spontaneous interfacial hydrolysis of monomer oil.
    Guan X; Sheng Y; Jiang H; Binks BP; Ngai T
    J Colloid Interface Sci; 2022 Oct; 623():476-486. PubMed ID: 35597017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inverse Pickering Emulsion Stabilized by Binary Particles with Contrasting Characteristics and Functionality for Interfacial Biocatalysis.
    Jiang H; Liu L; Li Y; Yin S; Ngai T
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4989-4997. PubMed ID: 31909591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-in-oil Pickering emulsions stabilized by an interfacial complex of water-insoluble polyphenol crystals and protein.
    Zembyla M; Murray BS; Radford SJ; Sarkar A
    J Colloid Interface Sci; 2019 Jul; 548():88-99. PubMed ID: 30981966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double emulsions and colloidosomes-in-colloidosomes using silica-based Pickering emulsifiers.
    Williams M; Armes SP; Verstraete P; Smets J
    Langmuir; 2014 Mar; 30(10):2703-11. PubMed ID: 24559174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-Sensitive W/O Pickering High Internal Phase Emulsions and W/O/W High Internal Water-Phase Double Emulsions with Tailored Microstructures Costabilized by Lecithin and Silica Inorganic Particles.
    Guan X; Ngai T
    Langmuir; 2021 Mar; 37(8):2843-2854. PubMed ID: 33595319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doubly pH Responsive Emulsions by Exploiting Aggregation of Oppositely Charged Nanoparticles and Polyelectrolytes.
    Shahid S; Gurram SR; Basavaraj MG
    Langmuir; 2018 May; 34(17):5060-5071. PubMed ID: 29649875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time Analysis of the Stability of Oil-In-Water Pickering Emulsion by Electrochemical Impedance Spectroscopy.
    Jiang Q; Sun N; Kumar P; Li Q; Liu B; Li A; Wang W; Gao Z
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32599776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.