These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Phosphate position is key in mediating transmembrane ion channel TMEM16A-phosphatidylinositol 4,5-bisphosphate interaction. Tembo M; Bainbridge RE; Lara-Santos C; Komondor KM; Daskivich GJ; Durrant JD; Rosenbaum JC; Carlson AE J Biol Chem; 2022 Aug; 298(8):102264. PubMed ID: 35843309 [TBL] [Abstract][Full Text] [Related]
5. Protocol to identify ligands of odorant receptors using two-electrode voltage clamp combined with the Cao S; Liu Y; Wang G STAR Protoc; 2022 Jun; 3(2):101249. PubMed ID: 35310077 [TBL] [Abstract][Full Text] [Related]
6. Phosphoinositide detection at synapses of fixed murine hippocampal neurons. Bolz S; Kaempf N; Muehlbauer M; Löwe D; Haucke V STAR Protoc; 2024 Jun; 5(2):102945. PubMed ID: 38573863 [TBL] [Abstract][Full Text] [Related]
7. Optogenetic control of phosphoinositide metabolism. Idevall-Hagren O; Dickson EJ; Hille B; Toomre DK; De Camilli P Proc Natl Acad Sci U S A; 2012 Aug; 109(35):E2316-23. PubMed ID: 22847441 [TBL] [Abstract][Full Text] [Related]
8. Depolarization activates the phosphoinositide phosphatase Ci-VSP, as detected in Xenopus oocytes coexpressing sensors of PIP2. Murata Y; Okamura Y J Physiol; 2007 Sep; 583(Pt 3):875-89. PubMed ID: 17615106 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of Phosphoinositide-Dependent Signaling in Sympathetic Neurons. Kruse M; Vivas O; Traynor-Kaplan A; Hille B J Neurosci; 2016 Jan; 36(4):1386-400. PubMed ID: 26818524 [TBL] [Abstract][Full Text] [Related]
12. Functional expression of a novel ginsenoside Rf binding protein from rat brain mRNA in Xenopus laevis oocytes. Choi S; Jung SY; Ko YS; Koh SR; Rhim H; Nah SY Mol Pharmacol; 2002 Apr; 61(4):928-35. PubMed ID: 11901233 [TBL] [Abstract][Full Text] [Related]
13. Maitotoxin triggers the cortical reaction and phosphatidylinositol-4,5-bisphosphate breakdown in amphibian oocytes. Bernard V; Laurent A; Derancourt J; Clément-Durand M; Picard A; Le Peuch C; Berta P; Dorée M Eur J Biochem; 1988 Jul; 174(4):655-62. PubMed ID: 2455638 [TBL] [Abstract][Full Text] [Related]
14. The phosphoinositide sensitivity of the K(v) channel family. Kruse M; Hille B Channels (Austin); 2013; 7(6):530-6. PubMed ID: 23907203 [TBL] [Abstract][Full Text] [Related]
15. Mechanosensitivity of GIRK channels is mediated by protein kinase C-dependent channel-phosphatidylinositol 4,5-bisphosphate interaction. Zhang L; Lee JK; John SA; Uozumi N; Kodama I J Biol Chem; 2004 Feb; 279(8):7037-47. PubMed ID: 14660621 [TBL] [Abstract][Full Text] [Related]
16. Distinct functional properties of two electrogenic isoforms of the SLC34 Na-Pi cotransporter. Mizutani N; Okochi Y; Okamura Y Physiol Rep; 2019 Jul; 7(14):e14156. PubMed ID: 31342668 [TBL] [Abstract][Full Text] [Related]
17. Phosphatidylinositol 4,5-bisphosphate degradation inhibits the Na+/bicarbonate cotransporter NBCe1-B and -C variants expressed in Xenopus oocytes. Thornell IM; Bevensee MO J Physiol; 2015 Feb; 593(3):541-58. PubMed ID: 25398525 [TBL] [Abstract][Full Text] [Related]
18. Golgi and plasma membrane pools of PI(4)P contribute to plasma membrane PI(4,5)P2 and maintenance of KCNQ2/3 ion channel current. Dickson EJ; Jensen JB; Hille B Proc Natl Acad Sci U S A; 2014 Jun; 111(22):E2281-90. PubMed ID: 24843134 [TBL] [Abstract][Full Text] [Related]
19. PIP2 and PIP as determinants for ATP inhibition of KATP channels. Baukrowitz T; Schulte U; Oliver D; Herlitze S; Krauter T; Tucker SJ; Ruppersberg JP; Fakler B Science; 1998 Nov; 282(5391):1141-4. PubMed ID: 9804555 [TBL] [Abstract][Full Text] [Related]