These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36634145)

  • 1. Production of brain-derived neurotrophic factor gates plasticity in developing visual cortex.
    Kaneko M; Stryker MP
    Proc Natl Acad Sci U S A; 2023 Jan; 120(3):e2214833120. PubMed ID: 36634145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TrkB kinase is required for recovery, but not loss, of cortical responses following monocular deprivation.
    Kaneko M; Hanover JL; England PM; Stryker MP
    Nat Neurosci; 2008 Apr; 11(4):497-504. PubMed ID: 18311133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intranasal BDNF administration promotes visual function recovery in adult amblyopic rats.
    Sansevero G; Baroncelli L; Scali M; Sale A
    Neuropharmacology; 2019 Feb; 145(Pt A):114-122. PubMed ID: 29428822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncovering a critical period of synaptic imbalance during postnatal development of the rat visual cortex: role of brain-derived neurotrophic factor.
    Zhang H; Mu L; Wang D; Xia D; Salmon A; Liu Q; Wong-Riley MTT
    J Physiol; 2018 Sep; 596(18):4511-4536. PubMed ID: 30055019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binocular eyelid closure promotes anatomical but not behavioral recovery from monocular deprivation.
    Duffy KR; Bukhamseen DH; Smithen MJ; Mitchell DE
    Vision Res; 2015 Sep; 114():151-60. PubMed ID: 25536470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex.
    Hanover JL; Huang ZJ; Tonegawa S; Stryker MP
    J Neurosci; 1999 Nov; 19(22):RC40. PubMed ID: 10559430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experience-dependent regulation of TrkB isoforms in rodent visual cortex.
    Bracken BK; Turrigiano GG
    Dev Neurobiol; 2009 Apr; 69(5):267-78. PubMed ID: 19224567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The long-term effectiveness of different regimens of occlusion on recovery from early monocular deprivation in kittens.
    Mitchell DE
    Philos Trans R Soc Lond B Biol Sci; 1991 Jul; 333(1266):51-79. PubMed ID: 1682958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experience-dependent structural plasticity at pre- and postsynaptic sites of layer 2/3 cells in developing visual cortex.
    Sun YJ; Espinosa JS; Hoseini MS; Stryker MP
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21812-21820. PubMed ID: 31591211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monocular deprivation decreases brain-derived neurotrophic factor immunoreactivity in the rat visual cortex.
    Rossi FM; Bozzi Y; Pizzorusso T; Maffei L
    Neuroscience; 1999 May; 90(2):363-8. PubMed ID: 10215141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of neurotrophins on ocular dominance plasticity in developing and adult cat visual cortex.
    Galuske RA; Kim DS; Castrén E; Singer W
    Eur J Neurosci; 2000 Sep; 12(9):3315-30. PubMed ID: 10998115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurotrophin-4/5 alters responses and blocks the effect of monocular deprivation in cat visual cortex during the critical period.
    Gillespie DC; Crair MC; Stryker MP
    J Neurosci; 2000 Dec; 20(24):9174-86. PubMed ID: 11124995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual cortical recovery from reverse occlusion depends on concordant binocular experience.
    Faulkner SD; Vorobyov V; Sengpiel F
    J Neurophysiol; 2006 Mar; 95(3):1718-26. PubMed ID: 16354732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serotonin triggers a transient epigenetic mechanism that reinstates adult visual cortex plasticity in rats.
    Maya Vetencourt JF; Tiraboschi E; Spolidoro M; Castrén E; Maffei L
    Eur J Neurosci; 2011 Jan; 33(1):49-57. PubMed ID: 21156002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of binocular responses after brief monocular deprivation in kittens.
    Kameyama K; Hata Y; Tsumoto T
    Neuroreport; 2005 Sep; 16(13):1447-50. PubMed ID: 16110269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrast gain control and cortical TrkB signaling shape visual acuity.
    Heimel JA; Saiepour MH; Chakravarthy S; Hermans JM; Levelt CN
    Nat Neurosci; 2010 May; 13(5):642-8. PubMed ID: 20400960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different mechanisms for loss and recovery of binocularity in the visual cortex.
    Liao DS; Mower AF; Neve RL; Sato-Bigbee C; Ramoa AS
    J Neurosci; 2002 Oct; 22(20):9015-23. PubMed ID: 12388608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correction of amblyopia in cats and mice after the critical period.
    Fong MF; Duffy KR; Leet MP; Candler CT; Bear MF
    Elife; 2021 Aug; 10():. PubMed ID: 34464258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rebound potentiation of inhibition in juvenile visual cortex requires vision-induced BDNF expression.
    Gao M; Maynard KR; Chokshi V; Song L; Jacobs C; Wang H; Tran T; Martinowich K; Lee HK
    J Neurosci; 2014 Aug; 34(32):10770-9. PubMed ID: 25100608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bilateral amblyopia after a short period of reverse occlusion in kittens.
    Murphy KM; Mitchell DE
    Nature; 1986 Oct 9-15; 323(6088):536-8. PubMed ID: 3762706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.