These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 36634272)
21. A Microscopically Heterogeneous Colloid Electrolyte for Extremely Fast-Charging and Long-Calendar-Life Silicon-Based Lithium-Ion Batteries. Zhang W; Zou W; Jiang G; Qi S; Peng S; Song H; Cui Z; Liang Z; Du L Angew Chem Int Ed Engl; 2024 Oct; 63(42):e202410046. PubMed ID: 39032152 [TBL] [Abstract][Full Text] [Related]
22. Tailoring Electrolyte Distributions to Enable High-performance Li Wei C; Yu D; Xu X; Wang R; Li J; Lin J; Chen S; Zhang L; Yu C Chem Asian J; 2023 Jun; 18(12):e202300304. PubMed ID: 37105938 [TBL] [Abstract][Full Text] [Related]
23. Breaking Mass Transport Limitations by Iodized Polyacrylonitrile Anodes for Extremely Fast-Charging Lithium-Ion Batteries. Ma S; Zhao J; Gao Q; Song C; Xiao H; Li F; Li G Angew Chem Int Ed Engl; 2023 Dec; 62(52):e202315564. PubMed ID: 37949835 [TBL] [Abstract][Full Text] [Related]
24. Constructing a Stable Interface Layer by Tailoring Solvation Chemistry in Carbonate Electrolytes for High-Performance Lithium-Metal Batteries. Piao Z; Xiao P; Luo R; Ma J; Gao R; Li C; Tan J; Yu K; Zhou G; Cheng HM Adv Mater; 2022 Feb; 34(8):e2108400. PubMed ID: 34859925 [TBL] [Abstract][Full Text] [Related]
25. Concentrated Electrolytes Widen the Operating Temperature Range of Lithium-Ion Batteries. Wang J; Zheng Q; Fang M; Ko S; Yamada Y; Yamada A Adv Sci (Weinh); 2021 Sep; 8(18):e2101646. PubMed ID: 34296534 [TBL] [Abstract][Full Text] [Related]
26. Interfacial Model Deciphering High-Voltage Electrolytes for High Energy Density, High Safety, and Fast-Charging Lithium-Ion Batteries. Zou Y; Cao Z; Zhang J; Wahyudi W; Wu Y; Liu G; Li Q; Cheng H; Zhang D; Park GT; Cavallo L; Anthopoulos TD; Wang L; Sun YK; Ming J Adv Mater; 2021 Oct; 33(43):e2102964. PubMed ID: 34510582 [TBL] [Abstract][Full Text] [Related]
27. Stable Operation of Lithium Metal Batteries with Aggressive Cathode Chemistries at 4.9 V. Piao Z; Ren HR; Lu G; Jia K; Tan J; Wu X; Zhuang Z; Han Z; Li C; Gao R; Tao X; Zhou G; Cheng HM Angew Chem Int Ed Engl; 2023 Apr; 62(15):e202300966. PubMed ID: 36788164 [TBL] [Abstract][Full Text] [Related]
28. Anion-Containing Solvation Structure Reconfiguration Enables Wide-Temperature Electrolyte for High-Energy-Density Lithium-Metal Batteries. Kuang S; Hua H; Lai P; Li J; Deng X; Yang Y; Zhao J ACS Appl Mater Interfaces; 2022 Apr; 14(16):19056-19066. PubMed ID: 35420775 [TBL] [Abstract][Full Text] [Related]
29. Gel Polymer Electrolyte Enables Low-Temperature and High-Rate Lithium-Ion Batteries via Bionic Interface Design. Liu X; Wang D; Zhang Z; Li G; Wang J; Yang G; Lin H; Lin J; Ou X; Zheng W Small; 2024 Nov; 20(45):e2404879. PubMed ID: 39101287 [TBL] [Abstract][Full Text] [Related]
30. An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes. Liu S; Ji X; Piao N; Chen J; Eidson N; Xu J; Wang P; Chen L; Zhang J; Deng T; Hou S; Jin T; Wan H; Li J; Tu J; Wang C Angew Chem Int Ed Engl; 2021 Feb; 60(7):3661-3671. PubMed ID: 33166432 [TBL] [Abstract][Full Text] [Related]
31. A Competitive Solvation of Ternary Eutectic Electrolytes Tailoring the Electrode/Electrolyte Interphase for Lithium Metal Batteries. Wu W; Liang Y; Li D; Bo Y; Wu D; Ci L; Li M; Zhang J ACS Nano; 2022 Sep; 16(9):14558-14568. PubMed ID: 36040142 [TBL] [Abstract][Full Text] [Related]
32. A Weakly Solvating Ether Electrolyte Enables Fast-Charging and Wide-Temperature Lithium-Ion Pouch Cells. Liao Y; Lin W; Zhang Y; Yang J; Li Z; Ren Y; Wang D; Huang Y; Yuan L ACS Nano; 2024 Jul; ():. PubMed ID: 39066714 [TBL] [Abstract][Full Text] [Related]
33. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
34. Synergistic Dual-Additive Electrolyte Enables Practical Lithium-Metal Batteries. Li S; Zhang W; Wu Q; Fan L; Wang X; Wang X; Shen Z; He Y; Lu Y Angew Chem Int Ed Engl; 2020 Aug; 59(35):14935-14941. PubMed ID: 32410377 [TBL] [Abstract][Full Text] [Related]
35. Switching Electrolyte Interfacial Model to Engineer Solid Electrolyte Interface for Fast Charging and Wide-Temperature Lithium-Ion Batteries. Liu G; Cao Z; Wang P; Ma Z; Zou Y; Sun Q; Cheng H; Cavallo L; Li S; Li Q; Ming J Adv Sci (Weinh); 2022 Sep; 9(26):e2201893. PubMed ID: 35843866 [TBL] [Abstract][Full Text] [Related]
36. Performance Leap of Lithium Metal Batteries in LiPF Zhang J; Shi J; Gordon LW; Shojarazavi N; Wen X; Zhao Y; Chen J; Su CC; Messinger RJ; Guo J ACS Appl Mater Interfaces; 2022 Aug; 14(32):36679-36687. PubMed ID: 35930841 [TBL] [Abstract][Full Text] [Related]
37. Design of Non-Incendive High-Voltage Liquid Electrolyte Formulation for Safe Lithium-Ion Batteries. Kwak S; An K; Tran YHT; Song SW ChemSusChem; 2022 Feb; 15(4):e202102546. PubMed ID: 34939746 [TBL] [Abstract][Full Text] [Related]
38. Enhancing Li Nan B; Chen L; Rodrigo ND; Borodin O; Piao N; Xia J; Pollard T; Hou S; Zhang J; Ji X; Xu J; Zhang X; Ma L; He X; Liu S; Wan H; Hu E; Zhang W; Xu K; Yang XQ; Lucht B; Wang C Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202205967. PubMed ID: 35789166 [TBL] [Abstract][Full Text] [Related]
39. Tailoring electrolyte enables high-voltage Ni-rich NCM cathode against aggressive cathode chemistries for Li-ion batteries. Cheng F; Zhang X; Wei P; Sun S; Xu Y; Li Q; Fang C; Han J; Huang Y Sci Bull (Beijing); 2022 Nov; 67(21):2225-2234. PubMed ID: 36545998 [TBL] [Abstract][Full Text] [Related]
40. Anchored Weakly-Solvated Electrolytes for High-Voltage and Low-Temperature Lithium-ion Batteries. Liu X; Zhang J; Yun X; Li J; Yu H; Peng L; Xi Z; Wang R; Yang L; Xie W; Chen J; Zhao Q Angew Chem Int Ed Engl; 2024 Sep; 63(36):e202406596. PubMed ID: 38872354 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]