BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36634458)

  • 21. Updates of mTOR inhibitors.
    Zhou H; Luo Y; Huang S
    Anticancer Agents Med Chem; 2010 Sep; 10(7):571-81. PubMed ID: 20812900
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibiting 4EBP1 in Glioblastoma.
    Fan QW; Nicolaides TP; Weiss WA
    Clin Cancer Res; 2018 Jan; 24(1):14-21. PubMed ID: 28696243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Benefits of mTOR kinase targeting in oncology: pre-clinical evidence with AZD8055.
    Marshall G; Howard Z; Dry J; Fenton S; Heathcote D; Gray N; Keen H; Logie A; Holt S; Smith P; Guichard SM
    Biochem Soc Trans; 2011 Apr; 39(2):456-9. PubMed ID: 21428919
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin.
    Bhagwat SV; Gokhale PC; Crew AP; Cooke A; Yao Y; Mantis C; Kahler J; Workman J; Bittner M; Dudkin L; Epstein DM; Gibson NW; Wild R; Arnold LD; Houghton PJ; Pachter JA
    Mol Cancer Ther; 2011 Aug; 10(8):1394-406. PubMed ID: 21673091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current development of the second generation of mTOR inhibitors as anticancer agents.
    Zhou HY; Huang SL
    Chin J Cancer; 2012 Jan; 31(1):8-18. PubMed ID: 22059905
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of ATP-competitive mTOR inhibitors.
    Liu Q; Kang SA; Thoreen CC; Hur W; Wang J; Chang JW; Markhard A; Zhang J; Sim T; Sabatini DM; Gray NS
    Methods Mol Biol; 2012; 821():447-60. PubMed ID: 22125084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potent dual inhibitors of TORC1 and TORC2 complexes (KU-0063794 and KU-0068650) demonstrate in vitro and ex vivo anti-keloid scar activity.
    Syed F; Sanganee HJ; Singh S; Bahl A; Bayat A
    J Invest Dermatol; 2013 May; 133(5):1340-50. PubMed ID: 23303455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2.
    Feldman ME; Apsel B; Uotila A; Loewith R; Knight ZA; Ruggero D; Shokat KM
    PLoS Biol; 2009 Feb; 7(2):e38. PubMed ID: 19209957
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CC-223, a Potent and Selective Inhibitor of mTOR Kinase: In Vitro and In Vivo Characterization.
    Mortensen DS; Fultz KE; Xu S; Xu W; Packard G; Khambatta G; Gamez JC; Leisten J; Zhao J; Apuy J; Ghoreishi K; Hickman M; Narla RK; Bissonette R; Richardson S; Peng SX; Perrin-Ninkovic S; Tran T; Shi T; Yang WQ; Tong Z; Cathers BE; Moghaddam MF; Canan SS; Worland P; Sankar S; Raymon HK
    Mol Cancer Ther; 2015 Jun; 14(6):1295-305. PubMed ID: 25855786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual mTORC1/2 inhibition induces anti-proliferative effect in NF1-associated plexiform neurofibroma and malignant peripheral nerve sheath tumor cells.
    Varin J; Poulain L; Hivelin M; Nusbaum P; Hubas A; Laurendeau I; Lantieri L; Wolkenstein P; Vidaud M; Pasmant E; Chapuis N; Parfait B
    Oncotarget; 2016 Jun; 7(24):35753-35767. PubMed ID: 26840085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impact of dual mTORC1/2 mTOR kinase inhibitor AZD8055 on acquired endocrine resistance in breast cancer in vitro.
    Jordan NJ; Dutkowski CM; Barrow D; Mottram HJ; Hutcheson IR; Nicholson RI; Guichard SM; Gee JM
    Breast Cancer Res; 2014 Jan; 16(1):R12. PubMed ID: 24457069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. AZD2014, an Inhibitor of mTORC1 and mTORC2, Is Highly Effective in ER+ Breast Cancer When Administered Using Intermittent or Continuous Schedules.
    Guichard SM; Curwen J; Bihani T; D'Cruz CM; Yates JW; Grondine M; Howard Z; Davies BR; Bigley G; Klinowska T; Pike KG; Pass M; Chresta CM; Polanska UM; McEwen R; Delpuech O; Green S; Cosulich SC
    Mol Cancer Ther; 2015 Nov; 14(11):2508-18. PubMed ID: 26358751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic Effects between mTOR Complex 1/2 and Glycolysis Inhibitors in Non-Small-Cell Lung Carcinoma Cells.
    Jiang S; Zou Z; Nie P; Wen R; Xiao Y; Tang J
    PLoS One; 2015; 10(7):e0132880. PubMed ID: 26176608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor.
    Rodrik-Outmezguine VS; Okaniwa M; Yao Z; Novotny CJ; McWhirter C; Banaji A; Won H; Wong W; Berger M; de Stanchina E; Barratt DG; Cosulich S; Klinowska T; Rosen N; Shokat KM
    Nature; 2016 Jun; 534(7606):272-6. PubMed ID: 27279227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure and ligand-based design of mTOR and PI3-kinase inhibitors leading to the clinical candidates VS-5584 (SB2343) and SB2602.
    Poulsen A; Nagaraj H; Lee A; Blanchard S; Soh CK; Chen D; Wang H; Hart S; Goh KC; Dymock B; Williams M
    J Chem Inf Model; 2014 Nov; 54(11):3238-50. PubMed ID: 25317974
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GSK3 is required for rapalogs to induce degradation of some oncogenic proteins and to suppress cancer cell growth.
    Koo J; Wang X; Owonikoko TK; Ramalingam SS; Khuri FR; Sun SY
    Oncotarget; 2015 Apr; 6(11):8974-87. PubMed ID: 25797247
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Switch in signaling control of mTORC1 activity after oncoprotein expression in thyroid cancer cell lines.
    Malaguarnera R; Chen KY; Kim TY; Dominguez JM; Voza F; Ouyang B; Vundavalli SK; Knauf JA; Fagin JA
    J Clin Endocrinol Metab; 2014 Oct; 99(10):E1976-87. PubMed ID: 25029414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PKI-179: an orally efficacious dual phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor.
    Venkatesan AM; Chen Z; dos Santos O; Dehnhardt C; Santos ED; Ayral-Kaloustian S; Mallon R; Hollander I; Feldberg L; Lucas J; Yu K; Chaudhary I; Mansour TS
    Bioorg Med Chem Lett; 2010 Oct; 20(19):5869-73. PubMed ID: 20797855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adenosine triphosphate-competitive mTOR inhibitors: a new class of immunosuppressive agents that inhibit allograft rejection.
    Rosborough BR; Raïch-Regué D; Liu Q; Venkataramanan R; Turnquist HR; Thomson AW
    Am J Transplant; 2014 Sep; 14(9):2173-80. PubMed ID: 25307040
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Discovery of 7-Methyl-2-[(7-methyl[1,2,4]triazolo[1,5-
    Goldberg FW; Finlay MRV; Ting AKT; Beattie D; Lamont GM; Fallan C; Wrigley GL; Schimpl M; Howard MR; Williamson B; Vazquez-Chantada M; Barratt DG; Davies BR; Cadogan EB; Ramos-Montoya A; Dean E
    J Med Chem; 2020 Apr; 63(7):3461-3471. PubMed ID: 31851518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.