These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36634485)

  • 1. A reactive transport model designed to predict the environmental footprint of an 'in-situ recovery' uranium exploitation.
    Escario S; Seigneur N; Collet A; Regnault O; de Boissezon H; Lagneau V; Descostes M
    J Contam Hydrol; 2023 Mar; 254():104106. PubMed ID: 36634485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling uranium and
    de Boissezon H; Levy L; Jakymiw C; Distinguin M; Guerin F; Descostes M
    J Contam Hydrol; 2020 Nov; 235():103711. PubMed ID: 32949982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.
    Saunders JA; Pivetz BE; Voorhies N; Wilkin RT
    J Environ Manage; 2016 Dec; 183():67-83. PubMed ID: 27576149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biostimulation as a sustainable solution for acid neutralization and uranium immobilization post acidic in-situ recovery.
    Coral T; Placko AL; Beaufort D; Tertre E; Bernier-Latmani R; Descostes M; De Boissezon H; Guillon S; Rossi P
    Sci Total Environ; 2022 May; 822():153597. PubMed ID: 35114226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive transport model of uranium by CO
    Zhang H; Zhang T; He Y
    Environ Sci Pollut Res Int; 2023 May; 30(24):65976-65989. PubMed ID: 37093393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of clay minerals on pH and major cation concentrations in acid-leached sands: Column experiments and reactive-transport modeling.
    Bonnet M; Robin V; Parrotin F; Grozeva N; Seigneur N; Batbaatar ME; Descostes M
    J Contam Hydrol; 2024 May; 264():104363. PubMed ID: 38805790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial communities associated with uranium in-situ recovery mining process are related to acid mine drainage assemblages.
    Coral T; Descostes M; De Boissezon H; Bernier-Latmani R; de Alencastro LF; Rossi P
    Sci Total Environ; 2018 Jul; 628-629():26-35. PubMed ID: 29428857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling the closure-related geochemical evolution of groundwater at a former uranium mine.
    Bain JG; Mayer KU; Blowes DW; Frind EO; Molson JW; Kahnt R; Jenk U
    J Contam Hydrol; 2001 Nov; 52(1-4):109-35. PubMed ID: 11695738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isotopic and Geochemical Tracers for U(VI) Reduction and U Mobility at an in Situ Recovery U Mine.
    Basu A; Brown ST; Christensen JN; DePaolo DJ; Reimus PW; Heikoop JM; Woldegabriel G; Simmons AM; House BM; Hartmann M; Maher K
    Environ Sci Technol; 2015 May; 49(10):5939-47. PubMed ID: 25909757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment.
    Yabusaki SB; Fang Y; Williams KH; Murray CJ; Ward AL; Dayvault RD; Waichler SR; Newcomer DR; Spane FA; Long PE
    J Contam Hydrol; 2011 Nov; 126(3-4):271-90. PubMed ID: 22115092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of contaminant levels and remediation efficacy in groundwater at a former in situ recovery uranium mine.
    Borch T; Roche N; Johnson TE
    J Environ Monit; 2012 Jul; 14(7):1814-23. PubMed ID: 22706154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of microbial activity in a uranium roll-front deposit: Unlocking their potential role as bioenhancers of the ore genesis.
    Jroundi F; Povedano-Priego C; Pinel-Cabello M; Descostes M; Grizard P; Purevsan B; Merroun ML
    Sci Total Environ; 2023 Feb; 861():160636. PubMed ID: 36464038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncertainty and variability in laboratory derived sorption parameters of sediments from a uranium in situ recovery site.
    Dangelmayr MA; Reimus PW; Johnson RH; Clay JT; Stone JJ
    J Contam Hydrol; 2018 Jun; 213():28-39. PubMed ID: 29691066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil and Aquifer Properties Combine as Predictors of Groundwater Uranium Concentrations within the Central Valley, California.
    Lopez AM; Wells A; Fendorf S
    Environ Sci Technol; 2021 Jan; 55(1):352-361. PubMed ID: 33289386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field experiments of surface water to groundwater recharge to characterize the mobility of uranium and vanadium at a former mill tailing site.
    Paradis CJ; Johnson RH; Tigar AD; Sauer KB; Marina OC; Reimus PW
    J Contam Hydrol; 2020 Feb; 229():103581. PubMed ID: 31810750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.
    Korichi S; Bensmaili A
    J Hazard Mater; 2009 Sep; 169(1-3):780-93. PubMed ID: 19428178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive transport modelling as a toolbox to compare remediation strategies for aquifers impacted by uranium in situ recovery.
    Seigneur N; Grozeva N; Purevsan B; Descostes M
    J Contam Hydrol; 2024 Jun; 265():104392. PubMed ID: 38954926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.
    Zachara JM; Long PE; Bargar J; Davis JA; Fox P; Fredrickson JK; Freshley MD; Konopka AE; Liu C; McKinley JP; Rockhold ML; Williams KH; Yabusaki SB
    J Contam Hydrol; 2013 Apr; 147():45-72. PubMed ID: 23500840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uranium Natural Attenuation Downgradient of an in Situ Recovery Mine Inferred from a Cross-Hole Field Test.
    Reimus PW; Dangelmayr MA; Clay JT; Chamberlain KR
    Environ Sci Technol; 2019 Jul; 53(13):7483-7493. PubMed ID: 31132251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.