These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 36634528)

  • 1. The occurrence, formation and transformation of disinfection byproducts in the water distribution system: A review.
    Dong F; Zhu J; Li J; Fu C; He G; Lin Q; Li C; Song S
    Sci Total Environ; 2023 Apr; 867():161497. PubMed ID: 36634528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlorine decay and disinfection by-products transformation under booster chlorination conditions: A pilot-scale study.
    Liao P; Zhang T; Fang L; Jiang R; Wu G
    Sci Total Environ; 2022 Dec; 851(Pt 1):158115. PubMed ID: 35985588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. THMs, HAAs and NAs production from culturable microorganisms in pipeline network by ozonation, chlorination, chloramination and joint disinfection strategies.
    Duan X; Liao X; Chen J; Xie S; Qi H; Li F; Yuan B
    Sci Total Environ; 2020 Nov; 744():140833. PubMed ID: 32717469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: A comprehensive review.
    Kali S; Khan M; Ghaffar MS; Rasheed S; Waseem A; Iqbal MM; Bilal Khan Niazi M; Zafar MI
    Environ Pollut; 2021 Jul; 281():116950. PubMed ID: 33819670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal variability of halogenated disinfection by-products in a large-scale two-source water distribution system with enhanced chlorination.
    Dong F; Pang Z; Yu J; Deng J; Li X; Ma X; Dietrich AM; Deng Y
    J Hazard Mater; 2022 Feb; 423(Pt A):127113. PubMed ID: 34523488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of iodinated trihalomethanes and haloacetic acids from aromatic iodinated disinfection byproducts during chloramination.
    Hu S; Gong T; Xian Q; Wang J; Ma J; Li Z; Yin J; Zhang B; Xu B
    Water Res; 2018 Dec; 147():254-263. PubMed ID: 30315993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The occurrence and transformation behaviors of disinfection byproducts in drinking water distribution systems in rural areas of eastern China.
    Yu Y; Ma X; Chen R; Li G; Tao H; Shi B
    Chemosphere; 2019 Aug; 228():101-109. PubMed ID: 31026630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derivates variation of phenylalanine as a model disinfection by-product precursor during long term chlorination and chloramination.
    Zhou K; Ye S; Yu Q; Chen J; Yong P; Ma X; Li Q; Dietrich AM
    Sci Total Environ; 2021 Jun; 771():144885. PubMed ID: 33736131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence and modeling of disinfection byproducts in distributed water of a megacity in China: Implications for human health.
    Pang Z; Zhang P; Chen X; Dong F; Deng J; Li C; Liu J; Ma X; Dietrich AM
    Sci Total Environ; 2022 Nov; 848():157674. PubMed ID: 35926603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO
    Padhi RK; Subramanian S; Satpathy KK
    Chemosphere; 2019 Mar; 218():540-550. PubMed ID: 30500715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection.
    Xue R; Shi H; Ma Y; Yang J; Hua B; Inniss EC; Adams CD; Eichholz T
    Chemosphere; 2017 Dec; 189():349-356. PubMed ID: 28942261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights for booster chlorination strategy based on DBPs control in a large-scale water supply system.
    Zhu S; Zheng H; Sun H; Liu J; Ma X; Li X; Li Q; Dietrich AM
    Sci Total Environ; 2022 Aug; 833():155001. PubMed ID: 35381256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of prevalent chlorine quenchers on phenolic disinfection byproducts in drinking water and potential reaction mechanisms.
    Li J; Chen J; Zhang Z; Liang X
    Sci Total Environ; 2023 May; 871():161971. PubMed ID: 36739019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation characteristics of disinfection byproducts from four different algal organic matter during chlorination and chloramination.
    Zhai H; Cheng S; Zhang L; Luo W; Zhou Y
    Chemosphere; 2022 Dec; 308(Pt 1):136171. PubMed ID: 36037959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence-based analysis on the toxicity of disinfection byproducts in vivo and in vitro for disinfection selection.
    Dong F; Chen J; Li C; Ma X; Jiang J; Lin Q; Lin C; Diao H
    Water Res; 2019 Nov; 165():114976. PubMed ID: 31445306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and control of C- and N-DBPs during disinfection of filter backwash and sedimentation sludge water in drinking water treatment.
    Qian Y; Chen Y; Hu Y; Hanigan D; Westerhoff P; An D
    Water Res; 2021 Apr; 194():116964. PubMed ID: 33652228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of plumbing systems on human exposure to disinfection byproducts in water: a case study.
    Chowdhury S
    J Water Health; 2016 Jun; 14(3):489-503. PubMed ID: 27280613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Models for predicting carbonaceous disinfection by-products formation in drinking water treatment plants: a case study of South Korea.
    Shahi NK; Maeng M; Dockko S
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):24594-24603. PubMed ID: 31243657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence of a new generation of disinfection byproducts.
    Krasner SW; Weinberg HS; Richardson SD; Pastor SJ; Chinn R; Sclimenti MJ; Onstad GD; Thruston AD
    Environ Sci Technol; 2006 Dec; 40(23):7175-85. PubMed ID: 17180964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and removal of disinfection by-products in a full scale drinking water treatment plant.
    MacKeown H; Adusei Gyamfi J; Schoutteten KVKM; Dumoulin D; Verdickt L; Ouddane B; Criquet J
    Sci Total Environ; 2020 Feb; 704():135280. PubMed ID: 31896211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.