These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36634798)

  • 1. Phosphorylation and specific DNA improved the incorporation ability of p53 into functional condensates.
    Chen Q; Wu Y; Dai Z; Zhang Z; Yang X
    Int J Biol Macromol; 2023 Mar; 230():123221. PubMed ID: 36634798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates.
    Guo YE; Manteiga JC; Henninger JE; Sabari BR; Dall'Agnese A; Hannett NM; Spille JH; Afeyan LK; Zamudio AV; Shrinivas K; Abraham BJ; Boija A; Decker TM; Rimel JK; Fant CB; Lee TI; Cisse II; Sharp PA; Taatjes DJ; Young RA
    Nature; 2019 Aug; 572(7770):543-548. PubMed ID: 31391587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program.
    Gomes NP; Bjerke G; Llorente B; Szostek SA; Emerson BM; Espinosa JM
    Genes Dev; 2006 Mar; 20(5):601-12. PubMed ID: 16510875
    [TBL] [Abstract][Full Text] [Related]  

  • 4. p53 Interacts with RNA polymerase II through its core domain and impairs Pol II processivity in vivo.
    Kim S; Balakrishnan SK; Gross DS
    PLoS One; 2011; 6(8):e22183. PubMed ID: 21829606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the p53/RNA polymerase II assembly.
    Liou SH; Singh SK; Singer RH; Coleman RA; Liu WL
    Commun Biol; 2021 Mar; 4(1):397. PubMed ID: 33767390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ser392 phosphorylation modulated a switch between p53 and transcriptional condensates.
    Dai Z; Li G; Chen Q; Yang X
    Biochim Biophys Acta Gene Regul Mech; 2022 May; 1865(4):194827. PubMed ID: 35618207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PHF3 regulates neuronal gene expression through the Pol II CTD reader domain SPOC.
    Appel LM; Franke V; Bruno M; Grishkovskaya I; Kasiliauskaite A; Kaufmann T; Schoeberl UE; Puchinger MG; Kostrhon S; Ebenwaldner C; Sebesta M; Beltzung E; Mechtler K; Lin G; Vlasova A; Leeb M; Pavri R; Stark A; Akalin A; Stefl R; Bernecky C; Djinovic-Carugo K; Slade D
    Nat Commun; 2021 Oct; 12(1):6078. PubMed ID: 34667177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation of C-terminal domain governs RNA polymerase II genomic locations and alternative splicing in eukaryotic transcription.
    Zhang Q; Kim W; Panina SB; Mayfield JE; Portz B; Zhang YJ
    Nat Commun; 2024 Sep; 15(1):7985. PubMed ID: 39266551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II.
    Lu H; Yu D; Hansen AS; Ganguly S; Liu R; Heckert A; Darzacq X; Zhou Q
    Nature; 2018 Jun; 558(7709):318-323. PubMed ID: 29849146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNA polymerase II clustering through carboxy-terminal domain phase separation.
    Boehning M; Dugast-Darzacq C; Rankovic M; Hansen AS; Yu T; Marie-Nelly H; McSwiggen DT; Kokic G; Dailey GM; Cramer P; Darzacq X; Zweckstetter M
    Nat Struct Mol Biol; 2018 Sep; 25(9):833-840. PubMed ID: 30127355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switching Condensates: The CTD Code Goes Liquid.
    Portz B; Shorter J
    Trends Biochem Sci; 2020 Jan; 45(1):1-3. PubMed ID: 31734037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Merging Established Mechanisms with New Insights: Condensates, Hubs, and the Regulation of RNA Polymerase II Transcription.
    Palacio M; Taatjes DJ
    J Mol Biol; 2022 Jan; 434(1):167216. PubMed ID: 34474085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural visualization of the p53/RNA polymerase II assembly.
    Singh SK; Qiao Z; Song L; Jani V; Rice W; Eng E; Coleman RA; Liu WL
    Genes Dev; 2016 Nov; 30(22):2527-2537. PubMed ID: 27920087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain.
    Harlen KM; Churchman LS
    Nat Rev Mol Cell Biol; 2017 Apr; 18(4):263-273. PubMed ID: 28248323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and phase separation of the C-terminal domain of RNA polymerase II.
    Lushpinskaia IP; Flores-Solis D; Zweckstetter M
    Biol Chem; 2023 Jul; 404(8-9):839-844. PubMed ID: 37331973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. hnRNP U inhibits carboxy-terminal domain phosphorylation by TFIIH and represses RNA polymerase II elongation.
    Kim MK; Nikodem VM
    Mol Cell Biol; 1999 Oct; 19(10):6833-44. PubMed ID: 10490622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of CAK kinase activity by p53.
    Schneider E; Montenarh M; Wagner P
    Oncogene; 1998 Nov; 17(21):2733-41. PubMed ID: 9840937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination of transcription, processing, and export of highly expressed RNAs by distinct biomolecular condensates.
    Ishov AM; Gurumurthy A; Bungert J
    Emerg Top Life Sci; 2020 Dec; 4(3):281-291. PubMed ID: 32338276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splicing and transcription-associated proteins PSF and p54nrb/nonO bind to the RNA polymerase II CTD.
    Emili A; Shales M; McCracken S; Xie W; Tucker PW; Kobayashi R; Blencowe BJ; Ingles CJ
    RNA; 2002 Sep; 8(9):1102-11. PubMed ID: 12358429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removing quote marks from the RNA polymerase II CTD 'code'.
    Dieci G
    Biosystems; 2021 Sep; 207():104468. PubMed ID: 34216714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.