These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 36635281)
1. Structural basis of transcription recognition of a hydrophobic unnatural base pair by T7 RNA polymerase. Oh J; Kimoto M; Xu H; Chong J; Hirao I; Wang D Nat Commun; 2023 Jan; 14(1):195. PubMed ID: 36635281 [TBL] [Abstract][Full Text] [Related]
2. An unnatural base pair system for in vitro replication and transcription. Hirao I; Kimoto M; Mitsui T; Fujiwara T; Kawai R; Sato A; Harada Y; Yokoyama S Nucleic Acids Symp Ser (Oxf); 2006; (50):33-4. PubMed ID: 17150803 [TBL] [Abstract][Full Text] [Related]
3. Site-specific incorporation of extra components into RNA by transcription using unnatural base pair systems. Kimoto M; Hirao I Methods Mol Biol; 2010; 634():355-69. PubMed ID: 20676996 [TBL] [Abstract][Full Text] [Related]
4. Fluorescent probing for RNA molecules by an unnatural base-pair system. Kimoto M; Mitsui T; Harada Y; Sato A; Yokoyama S; Hirao I Nucleic Acids Res; 2007; 35(16):5360-9. PubMed ID: 17693436 [TBL] [Abstract][Full Text] [Related]
5. PCR amplification and transcription for site-specific labeling of large RNA molecules by a two-unnatural-base-pair system. Kimoto M; Yamashige R; Yokoyama S; Hirao I J Nucleic Acids; 2012; 2012():230943. PubMed ID: 22792445 [TBL] [Abstract][Full Text] [Related]
6. Site-specific incorporation of functional components into RNA by transcription using unnatural base pair systems. Kimoto M; Sato A; Kawai R; Yokoyama S; Hirao I Nucleic Acids Symp Ser (Oxf); 2009; (53):73-4. PubMed ID: 19749266 [TBL] [Abstract][Full Text] [Related]
7. Site-specific incorporation of functional components into RNA by an unnatural base pair transcription system. Morohashi N; Kimoto M; Sato A; Kawai R; Hirao I Molecules; 2012 Mar; 17(3):2855-76. PubMed ID: 22399139 [TBL] [Abstract][Full Text] [Related]
8. Non-hydrogen-bonded base pairs for specific transcription. Hirao I; Mitsui T; Kimoto M; Kawai R; Sato A; Yokoyama S Nucleic Acids Symp Ser (Oxf); 2005; (49):33-4. PubMed ID: 17150619 [TBL] [Abstract][Full Text] [Related]
9. Structural basis of transcription inhibition by the DNA mimic protein Ocr of bacteriophage T7. Ye F; Kotta-Loizou I; Jovanovic M; Liu X; Dryden DT; Buck M; Zhang X Elife; 2020 Feb; 9():. PubMed ID: 32039758 [TBL] [Abstract][Full Text] [Related]
10. Importance of steric effects on the efficiency and fidelity of transcription by T7 RNA polymerase. Ulrich S; Kool ET Biochemistry; 2011 Nov; 50(47):10343-9. PubMed ID: 22044042 [TBL] [Abstract][Full Text] [Related]
11. Site-specific labeling of RNA by combining genetic alphabet expansion transcription and copper-free click chemistry. Someya T; Ando A; Kimoto M; Hirao I Nucleic Acids Res; 2015 Aug; 43(14):6665-76. PubMed ID: 26130718 [TBL] [Abstract][Full Text] [Related]
12. Transcriptional processing of an unnatural base pair by eukaryotic RNA polymerase II. Oh J; Shin J; Unarta IC; Wang W; Feldman AW; Karadeema RJ; Xu L; Xu J; Chong J; Krishnamurthy R; Huang X; Romesberg FE; Wang D Nat Chem Biol; 2021 Aug; 17(8):906-914. PubMed ID: 34140682 [TBL] [Abstract][Full Text] [Related]
13. Hierarchy of base-pair preference in the binding domain of the bacteriophage T7 promoter. Diaz GA; Raskin CA; McAllister WT J Mol Biol; 1993 Feb; 229(4):805-11. PubMed ID: 8445647 [TBL] [Abstract][Full Text] [Related]
14. An unnatural hydrophobic base pair system: site-specific incorporation of nucleotide analogs into DNA and RNA. Hirao I; Kimoto M; Mitsui T; Fujiwara T; Kawai R; Sato A; Harada Y; Yokoyama S Nat Methods; 2006 Sep; 3(9):729-35. PubMed ID: 16929319 [TBL] [Abstract][Full Text] [Related]
15. Strategies to Reduce Promoter-Independent Transcription of DNA Nanostructures and Strand Displacement Complexes. Schaffter SW; Kengmana E; Fern J; Byrne SR; Schulman R ACS Synth Biol; 2024 Jul; 13(7):1964-1977. PubMed ID: 38885464 [TBL] [Abstract][Full Text] [Related]
16. An engineered T7 RNA polymerase that produces mRNA free of immunostimulatory byproducts. Dousis A; Ravichandran K; Hobert EM; Moore MJ; Rabideau AE Nat Biotechnol; 2023 Apr; 41(4):560-568. PubMed ID: 36357718 [TBL] [Abstract][Full Text] [Related]
17. Making RNA: Using T7 RNA polymerase to produce high yields of RNA from DNA templates. Liu T; Patel S; Pyle AM Methods Enzymol; 2023; 691():185-207. PubMed ID: 37914446 [TBL] [Abstract][Full Text] [Related]
18. Recognition and initiation site for four late promoters of phage T7 is a 22-base pair DNA sequence. Panayotatos N; Wells RD Nature; 1979 Jul; 280(5717):35-9. PubMed ID: 15305578 [TBL] [Abstract][Full Text] [Related]
19. Efforts toward Further Integration of an Unnatural Base Pair into the Biology of a Semisynthetic Organism. Hashimoto K; Fischer EC; Romesberg FE J Am Chem Soc; 2021 Jun; 143(23):8603-8607. PubMed ID: 34096294 [TBL] [Abstract][Full Text] [Related]
20. T7 RNA polymerase catalyzed transcription of the epimerizable DNA lesion, Fapy•dG and 8-oxo-2'-deoxyguanosine. Gao S; Hou P; Wang D; Greenberg MM J Biol Chem; 2024 Sep; 300(9):107719. PubMed ID: 39214306 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]