These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Machine Learning Prediction of Antimicrobial Peptides. Wang G; Vaisman II; van Hoek ML Methods Mol Biol; 2022; 2405():1-37. PubMed ID: 35298806 [TBL] [Abstract][Full Text] [Related]
4. Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides. Medina-Ortiz D; Contreras S; Fernández D; Soto-García N; Moya I; Cabas-Mora G; Olivera-Nappa Á Int J Mol Sci; 2024 Aug; 25(16):. PubMed ID: 39201537 [TBL] [Abstract][Full Text] [Related]
5. Deep mutational scanning and machine learning for the analysis of antimicrobial-peptide features driving membrane selectivity. Randall JR; Vieira LC; Wilke CO; Davies BW Nat Biomed Eng; 2024 Jul; 8(7):842-853. PubMed ID: 39085646 [TBL] [Abstract][Full Text] [Related]
6. Mapping membrane activity in undiscovered peptide sequence space using machine learning. Lee EY; Fulan BM; Wong GC; Ferguson AL Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13588-13593. PubMed ID: 27849600 [TBL] [Abstract][Full Text] [Related]
7. Optimization of the antimicrobial peptide Bac7 by deep mutational scanning. Koch P; Schmitt S; Heynisch A; Gumpinger A; Wüthrich I; Gysin M; Shcherbakov D; Hobbie SN; Panke S; Held M BMC Biol; 2022 May; 20(1):114. PubMed ID: 35578204 [TBL] [Abstract][Full Text] [Related]
8. Machine learning-enabled discovery and design of membrane-active peptides. Lee EY; Wong GCL; Ferguson AL Bioorg Med Chem; 2018 Jun; 26(10):2708-2718. PubMed ID: 28728899 [TBL] [Abstract][Full Text] [Related]
9. Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria. Nagarajan D; Nagarajan T; Roy N; Kulkarni O; Ravichandran S; Mishra M; Chakravortty D; Chandra N J Biol Chem; 2018 Mar; 293(10):3492-3509. PubMed ID: 29259134 [TBL] [Abstract][Full Text] [Related]
10. Design of novel antimicrobial peptide dimer analogues with enhanced antimicrobial activity in vitro and in vivo by intermolecular triazole bridge strategy. Liu B; Huang H; Yang Z; Liu B; Gou S; Zhong C; Han X; Zhang Y; Ni J; Wang R Peptides; 2017 Feb; 88():115-125. PubMed ID: 28040477 [TBL] [Abstract][Full Text] [Related]
11. Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains. Fields FR; Freed SD; Carothers KE; Hamid MN; Hammers DE; Ross JN; Kalwajtys VR; Gonzalez AJ; Hildreth AD; Friedberg I; Lee SW Drug Dev Res; 2020 Feb; 81(1):43-51. PubMed ID: 31483516 [TBL] [Abstract][Full Text] [Related]
12. In vitro and in vivo activities of antimicrobial peptides developed using an amino acid-based activity prediction method. Wu X; Wang Z; Li X; Fan Y; He G; Wan Y; Yu C; Tang J; Li M; Zhang X; Zhang H; Xiang R; Pan Y; Liu Y; Lu L; Yang L Antimicrob Agents Chemother; 2014 Sep; 58(9):5342-9. PubMed ID: 24982064 [TBL] [Abstract][Full Text] [Related]
13. Antimicrobial peptides recognition using weighted physicochemical property encoding. Na S; Wannigama DL; Saethang T J Bioinform Comput Biol; 2023 Apr; 21(2):2350006. PubMed ID: 37120707 [TBL] [Abstract][Full Text] [Related]
14. Site-Specific Isopeptide Bond Formation: A Powerful Tool for the Generation of Potent and Nontoxic Antimicrobial Peptides. Wani NA; Stolovicki E; Hur DB; Shai Y J Med Chem; 2022 Mar; 65(6):5085-5094. PubMed ID: 35290038 [TBL] [Abstract][Full Text] [Related]
15. AMAP: Hierarchical multi-label prediction of biologically active and antimicrobial peptides. Gull S; Shamim N; Minhas F Comput Biol Med; 2019 Apr; 107():172-181. PubMed ID: 30831306 [TBL] [Abstract][Full Text] [Related]
16. Recent Progress in Machine Learning-based Prediction of Peptide Activity for Drug Discovery. Wu Q; Ke H; Li D; Wang Q; Fang J; Zhou J Curr Top Med Chem; 2019; 19(1):4-16. PubMed ID: 30674262 [TBL] [Abstract][Full Text] [Related]
17. The dermaseptin superfamily: a gene-based combinatorial library of antimicrobial peptides. Nicolas P; El Amri C Biochim Biophys Acta; 2009 Aug; 1788(8):1537-50. PubMed ID: 18929530 [TBL] [Abstract][Full Text] [Related]
18. Molecular de-extinction of ancient antimicrobial peptides enabled by machine learning. Maasch JRMA; Torres MDT; Melo MCR; de la Fuente-Nunez C Cell Host Microbe; 2023 Aug; 31(8):1260-1274.e6. PubMed ID: 37516110 [TBL] [Abstract][Full Text] [Related]
19. Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Das P; Sercu T; Wadhawan K; Padhi I; Gehrmann S; Cipcigan F; Chenthamarakshan V; Strobelt H; Dos Santos C; Chen PY; Yang YY; Tan JPK; Hedrick J; Crain J; Mojsilovic A Nat Biomed Eng; 2021 Jun; 5(6):613-623. PubMed ID: 33707779 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and anti-pseudomonal activity of new ß-Ala modified analogues of the antimicrobial peptide anoplin. Zhong C; Zhu Y; Zhu N; Liu T; Gou S; Zhang F; Yao J; Xie J; Ni J Int J Med Microbiol; 2020 Jul; 310(5):151433. PubMed ID: 32654770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]