BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36635574)

  • 21. Ecological and genomic profiling of anaerobic methane-oxidizing archaea in a deep granitic environment.
    Ino K; Hernsdorf AW; Konno U; Kouduka M; Yanagawa K; Kato S; Sunamura M; Hirota A; Togo YS; Ito K; Fukuda A; Iwatsuki T; Mizuno T; Komatsu DD; Tsunogai U; Ishimura T; Amano Y; Thomas BC; Banfield JF; Suzuki Y
    ISME J; 2018 Jan; 12(1):31-47. PubMed ID: 28885627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments.
    Shen LD; Wu HS; Liu X; Li J
    Water Res; 2017 Oct; 123():162-172. PubMed ID: 28668629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diversity, enrichment, and genomic potential of anaerobic methane- and ammonium-oxidizing microorganisms from a brewery wastewater treatment plant.
    Stultiens K; van Kessel MAHJ; Frank J; Fischer P; Pelzer C; van Alen TA; Kartal B; Op den Camp HJM; Jetten MSM
    Appl Microbiol Biotechnol; 2020 Aug; 104(16):7201-7212. PubMed ID: 32607646
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial chromate reduction coupled with anaerobic oxidation of methane in a membrane biofilm reactor.
    Luo JH; Wu M; Liu J; Qian G; Yuan Z; Guo J
    Environ Int; 2019 Sep; 130():104926. PubMed ID: 31228790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial abundance and activity of nitrite/nitrate-dependent anaerobic methane oxidizers in estuarine and intertidal wetlands: Heterogeneity and driving factors.
    Chen F; Zheng Y; Hou L; Niu Y; Gao D; An Z; Zhou J; Yin G; Dong H; Han P; Liang X; Liu M
    Water Res; 2021 Feb; 190():116737. PubMed ID: 33326895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Genome-Scale Metabolic Model of
    He B; Cai C; McCubbin T; Muriel JC; Sonnenschein N; Hu S; Yuan Z; Marcellin E
    Metabolites; 2022 Mar; 12(4):. PubMed ID: 35448501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of extracellular electron transfer in anaerobic methanotrophic archaea.
    Ouboter HT; Mesman R; Sleutels T; Postma J; Wissink M; Jetten MSM; Ter Heijne A; Berben T; Welte CU
    Nat Commun; 2024 Feb; 15(1):1477. PubMed ID: 38368447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the redox-active extracellular polymeric substances in an anaerobic methanotrophic consortium.
    Zhang X; Zhao J; Erler DV; Rabiee H; Kong Z; Wang S; Wang Z; Virdis B; Yuan Z; Hu S
    J Environ Manage; 2024 Jun; 365():121523. PubMed ID: 38901321
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methane emission suppression in flooded soil from Amazonia.
    Gabriel GVM; Oliveira LC; Barros DJ; Bento MS; Neu V; Toppa RH; Carmo JB; Navarrete AA
    Chemosphere; 2020 Jul; 250():126263. PubMed ID: 32088616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction.
    Cai C; Leu AO; Xie GJ; Guo J; Feng Y; Zhao JX; Tyson GW; Yuan Z; Hu S
    ISME J; 2018 Aug; 12(8):1929-1939. PubMed ID: 29662147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stratification of Diversity and Activity of Methanogenic and Methanotrophic Microorganisms in a Nitrogen-Fertilized Italian Paddy Soil.
    Vaksmaa A; van Alen TA; Ettwig KF; Lupotto E; Valè G; Jetten MSM; Lüke C
    Front Microbiol; 2017; 8():2127. PubMed ID: 29180985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Humic substances as electron acceptor for anaerobic oxidation of methane (AOM) and electron shuttle in Mn (IV)-dependent AOM.
    Xie M; Zhang X; Li S; Maulani N; Cai F; Zheng Y; Cai C; Virdis B; Yuan Z; Hu S
    Sci Total Environ; 2024 Feb; 912():169576. PubMed ID: 38145665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Active anaerobic methane oxidation in the groundwater table fluctuation zone of rice paddies.
    He Z; Shen J; Zhu Y; Gao J; Zhang D; Pan X
    Water Res; 2024 Jul; 258():121802. PubMed ID: 38796914
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anaerobic methane oxidation linked to Fe(III) reduction in a Candidatus Methanoperedens-enriched consortium from the cold Zoige wetland at Tibetan Plateau.
    Chen L; Li L; Zhang S; Zhang W; Xue K; Wang Y; Dong X
    Environ Microbiol; 2022 Feb; 24(2):614-625. PubMed ID: 34951085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effect of gradual increase of atmospheric CO
    Huang HC; Jin JH; Shen LD; Tian MH; Liu X; Yang WT; Hu ZH
    Ying Yong Sheng Tai Xue Bao; 2022 Sep; 33(9):2441-2449. PubMed ID: 36131660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anaerobic methanotrophic archaea of the ANME-2d clade feature lipid composition that differs from other ANME archaea.
    Kurth JM; Smit NT; Berger S; Schouten S; Jetten MSM; Welte CU
    FEMS Microbiol Ecol; 2019 Jul; 95(7):. PubMed ID: 31150548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metagenomic analysis reveals the contribution of anaerobic methanotroph-1b in the oxidation of methane at the Ulleung Basin, East Sea of Korea.
    Lee JW; Kwon KK; Bahk JJ; Lee DH; Lee HS; Kang SG; Lee JH
    J Microbiol; 2016 Dec; 54(12):814-822. PubMed ID: 27888460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatio-temporal variations of activity of nitrate-driven anaerobic oxidation of methane and community structure of Candidatus Methanoperedens-like archaea in sediment of Wuxijiang river.
    Cheng H; Yang Y; He Y; Zhan X; Liu Y; Hu Z; Huang H; Yao X; Yang W; Jin J; Ren B; Liu J; Hu Q; Jin Y; Shen L
    Chemosphere; 2023 May; 324():138295. PubMed ID: 36893867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea.
    Wang J; Hua M; Cai C; Hu J; Wang J; Yang H; Ma F; Qian H; Zheng P; Hu B
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709818
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep.
    Yu H; Speth DR; Connon SA; Goudeau D; Malmstrom RR; Woyke T; Orphan VJ
    Appl Environ Microbiol; 2022 Jun; 88(11):e0210921. PubMed ID: 35604226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.