These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 36635874)
41. Selective Center Charge Density Enables Conductive 2D Metal-Organic Frameworks with Exceptionally High Pseudocapacitance and Energy Density for Energy Storage Devices. Cheng S; Gao W; Cao Z; Yang Y; Xie E; Fu J Adv Mater; 2022 Apr; 34(14):e2109870. PubMed ID: 35112396 [TBL] [Abstract][Full Text] [Related]
42. Unlocking iron metal as a cathode for sustainable Li-ion batteries by an anion solid solution. Yu M; Wang J; Lei M; Jung MS; Zhuo Z; Yang Y; Zheng X; Sandstrom S; Wang C; Yang W; Jiang DE; Liu T; Ji X Sci Adv; 2024 May; 10(21):eadn4441. PubMed ID: 38781334 [TBL] [Abstract][Full Text] [Related]
43. 2D Conjugated Metal-Organic Frameworks Bearing Large Pore Apertures and Multiple Active Sites for High-Performance Aqueous Dual-Ion Batteries. Bao P; Cheng L; Yan X; Nie X; Su X; Wang HG; Chen L Angew Chem Int Ed Engl; 2024 Jul; 63(29):e202405168. PubMed ID: 38668683 [TBL] [Abstract][Full Text] [Related]
44. A Coordination Chemistry Approach for Lithium-Ion Batteries: The Coexistence of Metal and Ligand Redox Activities in a One-Dimensional Metal-Organic Material. Li G; Yang H; Li F; Cheng F; Shi W; Chen J; Cheng P Inorg Chem; 2016 May; 55(10):4935-40. PubMed ID: 27120483 [TBL] [Abstract][Full Text] [Related]
45. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650 [TBL] [Abstract][Full Text] [Related]
46. A Crystalline, 2D Polyarylimide Cathode for Ultrastable and Ultrafast Li Storage. Wang G; Chandrasekhar N; Biswal BP; Becker D; Paasch S; Brunner E; Addicoat M; Yu M; Berger R; Feng X Adv Mater; 2019 Jul; 31(28):e1901478. PubMed ID: 31099072 [TBL] [Abstract][Full Text] [Related]
47. 3D Porous Ti Liu Y; He Y; Vargun E; Plachy T; Saha P; Cheng Q Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32272560 [TBL] [Abstract][Full Text] [Related]
48. Overcoming Diffusion Limitation of Faradaic Processes: Property-Performance Relationships of 2D Conductive Metal-Organic Framework Cu Wrogemann JM; Lüther MJ; Bärmann P; Lounasvuori M; Javed A; Tiemann M; Golnak R; Xiao J; Petit T; Placke T; Winter M Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303111. PubMed ID: 37069123 [TBL] [Abstract][Full Text] [Related]
49. Alternate Storage of Opposite Charges in Multisites for High-Energy-Density Al-MOF Batteries. Guo Y; Wang W; Lei H; Wang M; Jiao S Adv Mater; 2022 Apr; 34(13):e2110109. PubMed ID: 35112402 [TBL] [Abstract][Full Text] [Related]
50. Interphase Building of Organic-Inorganic Hybrid Polymer Solid Electrolyte with Uniform Intermolecular Li Liu P; Zhang J; Zhong L; Huang S; Gong L; Han D; Wang S; Xiao M; Meng Y Small; 2021 Oct; 17(41):e2102454. PubMed ID: 34514698 [TBL] [Abstract][Full Text] [Related]
51. Flexible yet Robust Framework of Tin(II) Oxide Carbodiimide for Reversible Lithium Storage. Lv Z; Dong W; Jia B; Zhang S; Xie M; Zhao W; Huang F Chemistry; 2021 Feb; 27(8):2717-2723. PubMed ID: 33063319 [TBL] [Abstract][Full Text] [Related]
52. Ultrathin Two-Dimensional Metal-Organic Framework Nanosheets with the Inherent Open Active Sites as Electrocatalysts in Aprotic Li-O Yuan M; Wang R; Fu W; Lin L; Sun Z; Long X; Zhang S; Nan C; Sun G; Li H; Ma S ACS Appl Mater Interfaces; 2019 Mar; 11(12):11403-11413. PubMed ID: 30816695 [TBL] [Abstract][Full Text] [Related]
53. Controlled Synthesis of Mesoporous π-Conjugated Polymer Nanoarchitectures as Anodes for Lithium-Ion Batteries. Shi L; Li W; Wu Y; Wei F; Zhang T; Fu J; Jing C; Cheng J; Liu S Macromol Rapid Commun; 2022 Jul; 43(14):e2100897. PubMed ID: 35182088 [TBL] [Abstract][Full Text] [Related]
54. A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries. Luo Z; Liu L; Ning J; Lei K; Lu Y; Li F; Chen J Angew Chem Int Ed Engl; 2018 Jul; 57(30):9443-9446. PubMed ID: 29863784 [TBL] [Abstract][Full Text] [Related]
56. Dual-Redox-Sites Enable Two-Dimensional Conjugated Metal-Organic Frameworks with Large Pseudocapacitance and Wide Potential Window. Zhang P; Wang M; Liu Y; Yang S; Wang F; Li Y; Chen G; Li Z; Wang G; Zhu M; Dong R; Yu M; Schmidt OG; Feng X J Am Chem Soc; 2021 Jul; 143(27):10168-10176. PubMed ID: 34185519 [TBL] [Abstract][Full Text] [Related]
57. Two-Dimensional π-Conjugated Frameworks as a Model System to Unveil a Multielectron-Transfer-Based Energy Storage Mechanism. Sakaushi K; Nishihara H Acc Chem Res; 2021 Aug; 54(15):3003-3015. PubMed ID: 33998232 [TBL] [Abstract][Full Text] [Related]
59. A flexible ligand-based wavy layered metal-organic framework for lithium-ion storage. An T; Wang Y; Tang J; Wang Y; Zhang L; Zheng G J Colloid Interface Sci; 2015 May; 445():320-325. PubMed ID: 25638743 [TBL] [Abstract][Full Text] [Related]
60. Ultrathin Cobalt-Based Metal-Organic Framework Nanosheets with Both Metal and Ligand Redox Activities for Superior Lithium Storage. Ning Y; Lou X; Li C; Hu X; Hu B Chemistry; 2017 Nov; 23(63):15984-15990. PubMed ID: 28940576 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]