These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 36636235)

  • 21. Investigation of some of the factors influencing fingermark detection.
    Chadwick S; Moret S; Jayashanka N; Lennard C; Spindler X; Roux C
    Forensic Sci Int; 2018 Aug; 289():381-389. PubMed ID: 29960948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The evaluation of fingermarks given activity level propositions.
    de Ronde A; Kokshoorn B; de Poot CJ; de Puit M
    Forensic Sci Int; 2019 Sep; 302():109904. PubMed ID: 31472445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidation monitoring by fluorescence spectroscopy reveals the age of fingermarks.
    van Dam A; Schwarz JC; de Vos J; Siebes M; Sijen T; van Leeuwen TG; Aalders MC; Lambrechts SA
    Angew Chem Int Ed Engl; 2014 Jun; 53(24):6272-5. PubMed ID: 24847728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Occurrence and associative value of non-identifiable fingermarks.
    Stoney DA; De Donno M; Champod C; Wertheim PA; Stoney PL
    Forensic Sci Int; 2020 Apr; 309():110219. PubMed ID: 32142990
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Introducing a semi-automatic method to simulate large numbers of forensic fingermarks for research on fingerprint identification.
    Rodriguez CM; de Jongh A; Meuwly D
    J Forensic Sci; 2012 Mar; 57(2):334-42. PubMed ID: 22103733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The permanence of friction ridge skin and persistence of friction ridge skin and impressions: A comprehensive review and new results.
    Monson KL; Roberts MA; Knorr KB; Ali S; Meagher SB; Biggs K; Blume P; Brandelli D; Marzioli A; Reneau R; Tarasi F
    Forensic Sci Int; 2019 Apr; 297():111-131. PubMed ID: 30784948
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous development and detection ofdrug metabolites in latent fingermarks using antibody-magnetic particle conjugates.
    Boddis AM; Russell DA
    Anal Methods; 2011 Mar; 3(3):519-523. PubMed ID: 32938066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring the recovery and detection of messenger RNA and DNA from enhanced fingermarks in blood.
    Fox A; Gittos M; Harbison SA; Fleming R; Wivell R
    Sci Justice; 2014 May; 54(3):192-8. PubMed ID: 24796948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exposing latent fingermarks on problematic metal surfaces using time of flight secondary ion mass spectroscopy.
    Thandauthapani TD; Reeve AJ; Long AS; Turner IJ; Sharp JS
    Sci Justice; 2018 Nov; 58(6):405-414. PubMed ID: 30446069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recovery of latent fingermarks from brass cartridge cases: Evaluation of developers, analysis of surfaces and internal ballistic effects.
    Girelli CMA; Vieira MA; Singh K; Cunha AG; Freitas JCC; Emmerich FG
    Forensic Sci Int; 2018 Sep; 290():258-278. PubMed ID: 30099346
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal development of latent fingermarks on porous surfaces--further observations and refinements.
    Song DF; Sommerville D; Brown AG; Shimmon RG; Reedy BJ; Tahtouh M
    Forensic Sci Int; 2011 Jan; 204(1-3):97-110. PubMed ID: 20554406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Revealing the spatial distribution of chemical species within latent fingermarks using vibrational spectroscopy.
    Dorakumbura BN; Boseley RE; Becker T; Martin DE; Richter A; Tobin MJ; van Bronswjik W; Vongsvivut J; Hackett MJ; Lewis SW
    Analyst; 2018 Aug; 143(17):4027-4039. PubMed ID: 29956693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. International co-operation through the Interpol system to counter illicit drug trafficking.
    Leamy WJ
    Bull Narc; 1983; 35(4):55-60. PubMed ID: 6563926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monodisperse silica nanoparticle suspension for developing latent blood fingermarks.
    Meng L; Ren Y; Zhou Z; Li C; Wang C; Fu S
    Forensic Sci Res; 2020; 5(1):38-46. PubMed ID: 32490309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of acid-modified Imperata cylindrica powder for latent fingerprint development.
    Low WZ; Khoo BE; Aziz ZB; Low LW; Teng TT; bin Abdullah AF
    Sci Justice; 2015 Sep; 55(5):347-54. PubMed ID: 26385718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of latent fingermarks on surfaces submerged in water: Optimization studies for phase transfer catalyst (PTC) based reagents.
    Jasuja OP; Kumar P; Singh G
    Sci Justice; 2015 Sep; 55(5):335-42. PubMed ID: 26385716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fixing latent fingermarks developed by iodine fuming: a new method.
    Jasuja OP; Kaur A; Kumar P
    Forensic Sci Int; 2012 Nov; 223(1-3):e47-52. PubMed ID: 23103178
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of DNA concentration in fingermarks using autofluorescence properties.
    Falkena K; Hoveling RJM; van Weert A; Lambrechts SAG; van Leeuwen TG; Aalders MCG; van Dam A
    Forensic Sci Int; 2019 Feb; 295():128-136. PubMed ID: 30583268
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantitative evaluation of latent fingermarks with novel enhancement and illumination.
    Lanahan M; Yoda M
    Sci Justice; 2021 Sep; 61(5):635-648. PubMed ID: 34482944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of DNA recovery on the subsequent quality of latent fingermarks: A pseudo-operational trial.
    Fieldhouse S; Parsons R; Bleay S; Walton-Williams L
    Forensic Sci Int; 2020 Feb; 307():110076. PubMed ID: 31862657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.