BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 3663625)

  • 1. Classical Raman spectroscopic studies of NADH and NAD+ bound to liver alcohol dehydrogenase by difference techniques.
    Chen D; Yue KT; Martin C; Rhee KW; Sloan D; Callender R
    Biochemistry; 1987 Jul; 26(15):4776-84. PubMed ID: 3663625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular properties of p-(dimethylamino)benzaldehyde bound to liver alcohol dehydrogenase: a Raman spectroscopic study.
    Callender R; Chen D; Lugtenburg J; Martin C; Rhee KW; Sloan D; Vandersteen R; Yue KT
    Biochemistry; 1988 May; 27(10):3672-81. PubMed ID: 3408720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman study of reduced nicotinamide adenine dinucleotide bound to liver alcohol dehydrogenase.
    Yue KT; Yang JP; Martin CL; Lee SK; Sloan DL; Callender RH
    Biochemistry; 1984 Dec; 23(26):6480-3. PubMed ID: 6397225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray analysis of structural changes induced by reduced nicotinamide adenine dinucleotide when bound to cysteine-46-carboxymethylated liver alcohol dehydrogenase.
    Cedergren-Zeppezauer ES; Andersson I; Ottonello S; Bignetti E
    Biochemistry; 1985 Jul; 24(15):4000-10. PubMed ID: 2932154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classical Raman spectroscopic studies of NADH and NAD+ bound to lactate dehydrogenase by difference techniques.
    Deng H; Zheng J; Sloan D; Burgner J; Callender R
    Biochemistry; 1989 Feb; 28(4):1525-33. PubMed ID: 2719916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman spectroscopic studies of NAD coenzymes bound to malate dehydrogenases by difference techniques.
    Deng H; Burgner J; Callender R
    Biochemistry; 1991 Sep; 30(36):8804-11. PubMed ID: 1888740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a transient intermediate formed in the liver alcohol dehydrogenase catalyzed reduction of 3-hydroxy-4-nitrobenzaldehyde.
    MacGibbon AK; Koerber SC; Pease K; Dunn MF
    Biochemistry; 1987 Jun; 26(11):3058-67. PubMed ID: 3607010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ultraviolet resonance Raman study of dehydrogenase enzymes and their interactions with coenzymes and substrates.
    Austin JC; Wharton CW; Hester RE
    Biochemistry; 1989 Feb; 28(4):1533-8. PubMed ID: 2655694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active-site cobalt(II)-substituted horse liver alcohol dehydrogenase: characterization of intermediates in the oxidation and reduction processes as a function of pH.
    Sartorius C; Gerber M; Zeppezauer M; Dunn MF
    Biochemistry; 1987 Feb; 26(3):871-82. PubMed ID: 3567150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct transfer of reduced nicotinamide adenine dinucleotide from glyceraldehyde-3-phosphate dehydrogenase to liver alcohol dehydrogenase.
    Srivastava DK; Bernhard SA
    Biochemistry; 1984 Sep; 23(20):4538-45. PubMed ID: 6388629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 113Cd NMR in binary and ternary complexes of cadmium-substituted horse liver alcohol dehydrogenase.
    Bobsein BR; Myers RJ
    J Biol Chem; 1981 Jun; 256(11):5313-6. PubMed ID: 7016851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ternary complexes of liver alcohol dehydrogenase.
    Pocker Y; Page JD; Li H; Bhat CC
    Chem Biol Interact; 2001 Jan; 130-132(1-3):371-81. PubMed ID: 11306059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of the pH dependence of the formation of binary and ternary complexes with liver alcohol dehydrogenase.
    Eftink MR; Byström K
    Biochemistry; 1986 Oct; 25(21):6624-30. PubMed ID: 3790547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier transform infrared spectroscopic studies of proton transfer processes and the dissociation of Zn2+-bound water in alcohol dehydrogenases.
    Nadolny C; Zundel G
    Eur J Biochem; 1997 Aug; 247(3):914-9. PubMed ID: 9288915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallographic studies of isosteric NAD analogues bound to alcohol dehydrogenase: specificity and substrate binding in two ternary complexes.
    Li H; Hallows WH; Punzi JS; Pankiewicz KW; Watanabe KA; Goldstein BM
    Biochemistry; 1994 Oct; 33(39):11734-44. PubMed ID: 7918390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Room temperature phosphorescence of Trp-314 as a monitor of subunit communications in alcohol dehydrogenase from horse liver.
    Strambini GB; Gonnelli M; Galley WC
    Biochemistry; 1990 Jan; 29(1):203-8. PubMed ID: 2322542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active site specific cadmium(II)-substituted horse liver alcohol dehydrogenase: crystal structures of the free enzyme, its binary complex with NADH, and the ternary complex with NADH and bound p-bromobenzyl alcohol.
    Schneider G; Cedergren-Zeppezauer E; Knight S; Eklund H; Zeppezauer M
    Biochemistry; 1985 Dec; 24(25):7503-10. PubMed ID: 2935190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical spectroscopy of nicotinoprotein alcohol dehydrogenase from Amycolatopsis methanolica: a comparison with horse liver alcohol dehydrogenase and UDP-galactose epimerase.
    Piersma SR; Visser AJ; de Vries S; Duine JA
    Biochemistry; 1998 Mar; 37(9):3068-77. PubMed ID: 9485460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance Raman spectra of copper(II)-substituted liver alcohol dehydrogenase: a type 1 copper analogue.
    Maret W; Zeppezauer M; Sanders-Loehr J; Loehr TM
    Biochemistry; 1983 Jun; 22(13):3202-6. PubMed ID: 6349682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman spectroscopy of oxidized and reduced nicotinamide adenine dinucleotides.
    Yue KT; Martin CL; Chen D; Nelson P; Sloan DL; Callender R
    Biochemistry; 1986 Aug; 25(17):4941-7. PubMed ID: 3768324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.