These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36636476)

  • 21. From promise to application: root traits for enhanced nutrient capture in rice breeding.
    Wissuwa M; Kretzschmar T; Rose TJ
    J Exp Bot; 2016 Jun; 67(12):3605-15. PubMed ID: 27036129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Programmatic Access to FAIRified Digital Plant Genetic Resources.
    Ghaffar M; Schüler D; König P; Arend D; Junker A; Scholz U; Lange M
    J Integr Bioinform; 2020 Jan; 16(4):. PubMed ID: 31913851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling Crop Genetic Resources Phenotyping Information Systems.
    Germeier CU; Unger S
    Front Plant Sci; 2019; 10():728. PubMed ID: 31281323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Future scenarios for plant phenotyping.
    Fiorani F; Schurr U
    Annu Rev Plant Biol; 2013; 64():267-91. PubMed ID: 23451789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PGP repository: a plant phenomics and genomics data publication infrastructure.
    Arend D; Junker A; Scholz U; Schüler D; Wylie J; Lange M
    Database (Oxford); 2016; 2016():. PubMed ID: 27087305
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phenological growth stages of Korean ginseng (
    Kim YS; Park CS; Lee DY; Lee JS; Lee SH; In JG; Hong TK
    J Ginseng Res; 2021 Jul; 45(4):527-534. PubMed ID: 34295213
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Digital whole-community phenotyping: tracking morphological and physiological responses of plant communities to environmental changes in the field.
    Zieschank V; Junker RR
    Front Plant Sci; 2023; 14():1141554. PubMed ID: 37229120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crop phenotyping in a context of global change: What to measure and how to do it.
    Araus JL; Kefauver SC; Vergara-Díaz O; Gracia-Romero A; Rezzouk FZ; Segarra J; Buchaillot ML; Chang-Espino M; Vatter T; Sanchez-Bragado R; Fernandez-Gallego JA; Serret MD; Bort J
    J Integr Plant Biol; 2022 Feb; 64(2):592-618. PubMed ID: 34807514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uses, Botanical Characteristics, and Phenological Development of Slender Nightshade (
    Ramírez-Olvera SM; Sandoval-Villa M
    Plants (Basel); 2023 Apr; 12(8):. PubMed ID: 37111868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HTPheno: an image analysis pipeline for high-throughput plant phenotyping.
    Hartmann A; Czauderna T; Hoffmann R; Stein N; Schreiber F
    BMC Bioinformatics; 2011 May; 12():148. PubMed ID: 21569390
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laboratory Information Management Software for genotyping workflows: applications in high throughput crop genotyping.
    Jayashree B; Reddy PT; Leeladevi Y; Crouch JH; Mahalakshmi V; Buhariwalla HK; Eshwar KE; Mace E; Folksterma R; Senthilvel S; Varshney RK; Seetha K; Rajalakshmi R; Prasanth VP; Chandra S; Swarupa L; Srikalyani P; Hoisington DA
    BMC Bioinformatics; 2006 Aug; 7():383. PubMed ID: 16914063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. BRIDGE - A Visual Analytics Web Tool for Barley Genebank Genomics.
    König P; Beier S; Basterrechea M; Schüler D; Arend D; Mascher M; Stein N; Scholz U; Lange M
    Front Plant Sci; 2020; 11():701. PubMed ID: 32595658
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Content of Phenolic Acids and Flavonols in the Leaves of Nine Varieties of Sweet Potatoes (
    Krochmal-Marczak B; Cebulak T; Kapusta I; Oszmiański J; Kaszuba J; Żurek N
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32751600
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Breeder friendly phenotyping.
    Reynolds M; Chapman S; Crespo-Herrera L; Molero G; Mondal S; Pequeno DNL; Pinto F; Pinera-Chavez FJ; Poland J; Rivera-Amado C; Saint Pierre C; Sukumaran S
    Plant Sci; 2020 Jun; 295():110396. PubMed ID: 32534615
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrating modelling and phenotyping approaches to identify and screen complex traits: transpiration efficiency in cereals.
    Chenu K; Van Oosterom EJ; McLean G; Deifel KS; Fletcher A; Geetika G; Tirfessa A; Mace ES; Jordan DR; Sulman R; Hammer GL
    J Exp Bot; 2018 Jun; 69(13):3181-3194. PubMed ID: 29474730
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SPOT: Scanning plant IoT facility for high-throughput plant phenotyping.
    Lantin S; McCourt K; Butcher N; Puri V; Esposito M; Sanchez S; Ramirez-Loza F; McLamore E; Correll M; Singh A
    HardwareX; 2023 Sep; 15():e00468. PubMed ID: 37693634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for plant genome editing].
    Khlestkina EK; Shumny VK
    Genetika; 2016 Jul; 52(7):774-87. PubMed ID: 29368840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Field high-throughput phenotyping: the new crop breeding frontier.
    Araus JL; Cairns JE
    Trends Plant Sci; 2014 Jan; 19(1):52-61. PubMed ID: 24139902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Technical workflows for hyperspectral plant image assessment and processing on the greenhouse and laboratory scale.
    Paulus S; Mahlein AK
    Gigascience; 2020 Aug; 9(8):. PubMed ID: 32815537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.