These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36636490)

  • 21.
    Zhang M; Zhang S; Ma Y
    Front Chem; 2022; 10():1104844. PubMed ID: 36688037
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reductive Amination of Furanic Aldehydes in Aqueous Solution over Versatile Ni
    Yuan H; Li JP; Su F; Yan Z; Kusema BT; Streiff S; Huang Y; Pera-Titus M; Shi F
    ACS Omega; 2019 Feb; 4(2):2510-2516. PubMed ID: 31459489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ambient-Temperature Reductive Amination of 5-Hydroxymethylfurfural Over Al
    Hu Q; Jiang S; Wu Y; Xu H; Li G; Zhou Y; Wang J
    ChemSusChem; 2022 Jul; 15(13):e202200192. PubMed ID: 35233939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enabling direct-growth route for highly efficient ethanol upgrading to long-chain alcohols in aqueous phase.
    Gu J; Gong W; Zhang Q; Long R; Ma J; Wang X; Li J; Li J; Fan Y; Zheng X; Qiu S; Wang T; Xiong Y
    Nat Commun; 2023 Dec; 14(1):7935. PubMed ID: 38040753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alkene Isomerization Using a Heterogeneous Nickel-Hydride Catalyst.
    Chang AS; Kascoutas MA; Valentine QP; How KI; Thomas RM; Cook AK
    J Am Chem Soc; 2024 Jun; 146(22):15596-15608. PubMed ID: 38771258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activation and discovery of earth-abundant metal catalysts using sodium tert-butoxide.
    Docherty JH; Peng J; Dominey AP; Thomas SP
    Nat Chem; 2017 Jan; 9(6):595-600. PubMed ID: 28537588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-precious metal-based heterostructure catalysts for hydrogen evolution reaction: mechanisms, design principles, and future prospects.
    Sun M; Li Y; Wang S; Wang Z; Li Z; Zhang T
    Nanoscale; 2023 Aug; 15(33):13515-13531. PubMed ID: 37580995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fast reductive amination by transfer hydrogenation "on water".
    Lei Q; Wei Y; Talwar D; Wang C; Xue D; Xiao J
    Chemistry; 2013 Mar; 19(12):4021-9. PubMed ID: 23401346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Air-Stable Ni Catalysts Prepared by Liquid-Phase Reduction Using Hydrosilanes for Reactions with Hydrogen.
    Kita Y; Kato K; Takeuchi S; Oyoshi T; Kamata K; Hara M
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55659-55668. PubMed ID: 38010144
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Re promoter on the structure and catalytic performance of Ni-Re/Al
    Ma L; Yan L; Lu AH; Ding Y
    RSC Adv; 2018 Feb; 8(15):8152-8163. PubMed ID: 35542042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hexaazatrinaphthalene-Based Covalent Triazine Framework-Supported Rhodium(III) Complex: A Recyclable Heterogeneous Catalyst for the Reductive Amination of Ketones to Primary Amines.
    Chen X; Liu D; Yang C; Shi L; Li F
    Inorg Chem; 2023 Jun; 62(24):9360-9368. PubMed ID: 37285321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noble-Metal-Free Ni-W-O-Derived Catalysts for High-Capacity Hydrogen Production from Hydrazine Monohydrate.
    Shi Q; Zhang DX; Yin H; Qiu YP; Zhou LL; Chen C; Wu H; Wang P
    ACS Sustain Chem Eng; 2020; 8(14):. PubMed ID: 33654580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-Crystal Cobalt Phosphide Nanorods as a High-Performance Catalyst for Reductive Amination of Carbonyl Compounds.
    Sheng M; Fujita S; Yamaguchi S; Yamasaki J; Nakajima K; Yamazoe S; Mizugaki T; Mitsudome T
    JACS Au; 2021 Apr; 1(4):501-507. PubMed ID: 34467312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon-Supported Ru-Ni and Ru-W Catalysts for the Transformation of Hydroxyacetone and Saccharides into Glycol-Derived Primary Amines.
    Boulos J; Goc F; Vandenbrouck T; Perret N; Dhainaut J; Royer S; Rataboul F
    ChemSusChem; 2024 Jun; 17(11):e202400540. PubMed ID: 38572685
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanostructured Nickel/Silica Catalysts for Continuous Flow Conversion of Levulinic Acid to γ-Valerolactone.
    Mallesham B; Sudarsanam P; Venkata Shiva Reddy B; Govinda Rao B; Reddy BM
    ACS Omega; 2018 Dec; 3(12):16839-16849. PubMed ID: 31458310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A General Strategy to Atomically Dispersed Precious Metal Catalysts for Unravelling Their Catalytic Trends for Oxygen Reduction Reaction.
    Kim JH; Shin D; Lee J; Baek DS; Shin TJ; Kim YT; Jeong HY; Kwak JH; Kim H; Joo SH
    ACS Nano; 2020 Feb; 14(2):1990-2001. PubMed ID: 31999424
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Advances in Catalytic Hydrosilylations: Developments beyond Traditional Platinum Catalysts.
    de Almeida LD; Wang H; Junge K; Cui X; Beller M
    Angew Chem Int Ed Engl; 2021 Jan; 60(2):550-565. PubMed ID: 32668079
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Supported gold catalysis: from small molecule activation to green chemical synthesis.
    Liu X; He L; Liu YM; Cao Y
    Acc Chem Res; 2014 Mar; 47(3):793-804. PubMed ID: 24328524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microwave-Assisted Reductive Amination of Aldehydes and Ketones Over Rhodium-Based Heterogeneous Catalysts.
    Bucciol F; Gaudino EC; Villa A; Valsania MC; Cravotto G; Manzoli M
    Chempluschem; 2023 Mar; 88(3):e202300017. PubMed ID: 36971074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.