These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 36636638)

  • 1. Construction of artificial periosteum with methacrylamide gelatin hydrogel-wharton's jelly based on stem cell recruitment and its application in bone tissue engineering.
    Zhang W; Sun T; Zhang J; Hu X; Yang M; Han L; Xu G; Zhao Y; Li Z
    Mater Today Bio; 2023 Feb; 18():100528. PubMed ID: 36636638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic periosteum-bone substitute composed of preosteoblast-derived matrix and hydrogel for large segmental bone defect repair.
    Yu Y; Wang Y; Zhang W; Wang H; Li J; Pan L; Han F; Li B
    Acta Biomater; 2020 Sep; 113():317-327. PubMed ID: 32574859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inorganic Strengthened Hydrogel Membrane as Regenerative Periosteum.
    Xin T; Gu Y; Cheng R; Tang J; Sun Z; Cui W; Chen L
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41168-41180. PubMed ID: 29144723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroRNA-196a-5p overexpression in Wharton's jelly umbilical cord stem cells promotes their osteogenic differentiation and new bone formation in bone defects in the rat calvarium.
    Wang Y; Zhang S; Yang H; Cao Y; Yu D; Zhao Y; Cao Y
    Cell Tissue Res; 2022 Nov; 390(2):245-260. PubMed ID: 35925405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study on the gelatin methacryloyl composite scaffold with exogenous transforming growth factor β
    Liu X; Wang Z; Xu C; Guan J; Wei B; Liu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2021 Jul; 35(7):904-912. PubMed ID: 34308601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periosteum and development of the tissue-engineered periosteum for guided bone regeneration.
    Zhang W; Wang N; Yang M; Sun T; Zhang J; Zhao Y; Huo N; Li Z
    J Orthop Translat; 2022 Mar; 33():41-54. PubMed ID: 35228996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmed Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Inorganic Ion Composite Hydrogel as Artificial Periosteum.
    Xin T; Mao J; Liu L; Tang J; Wu L; Yu X; Gu Y; Cui W; Chen L
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):6840-6851. PubMed ID: 31999085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano artificial periosteum PLGA/MgO/Quercetin accelerates repair of bone defects through promoting osteogenic - angiogenic coupling effect via Wnt/ β-catenin pathway.
    He X; Liu W; Liu Y; Zhang K; Sun Y; Lei P; Hu Y
    Mater Today Bio; 2022 Dec; 16():100348. PubMed ID: 35847378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harnessing Wharton's jelly stem cell differentiation into bone-like nodule on calcium phosphate substrate without osteoinductive factors.
    Mechiche Alami S; Rammal H; Boulagnon-Rombi C; Velard F; Lazar F; Drevet R; Laurent Maquin D; Gangloff SC; Hemmerlé J; Voegel JC; Francius G; Schaaf P; Boulmedais F; Kerdjoudj H
    Acta Biomater; 2017 Feb; 49():575-589. PubMed ID: 27888100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sericin/ graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone.
    Qi C; Deng Y; Xu L; Yang C; Zhu Y; Wang G; Wang Z; Wang L
    Theranostics; 2020; 10(2):741-756. PubMed ID: 31903148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wharton's Jelly for Augmented Cleft Palate Repair in a Rat Critical-Size Alveolar Bone Defect Model.
    Sahai S; Wilkerson M; Xue H; Moreno N; Carrillo L; Flores R; Greives MR; Olson SD; Cox CS; Triolo F
    Tissue Eng Part A; 2020 Jun; 26(11-12):591-601. PubMed ID: 31739755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen scaffolds with in situ-grown calcium phosphate for osteogenic differentiation of Wharton's jelly and menstrual blood stem cells.
    Karadas O; Yucel D; Kenar H; Torun Kose G; Hasirci V
    J Tissue Eng Regen Med; 2014 Jul; 8(7):534-45. PubMed ID: 22744919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of canine Wharton's jelly-derived mesenchymal stem cells.
    Seo MS; Park SB; Kang KS
    Cell Transplant; 2012; 21(7):1493-502. PubMed ID: 22732242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulus-dependent characteristics of Wharton's jelly mesenchymal stem cells (WJMSC) encapsulated in hydrogel microspheres.
    Ramesh A; Kanafi MM; Bhonde RR
    J Biomater Sci Polym Ed; 2014; 25(17):1946-61. PubMed ID: 25247724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscaled Bionic Periosteum Orchestrating the Osteogenic Microenvironment for Sequential Bone Regeneration.
    Li H; Wang H; Pan J; Li J; Zhang K; Duan W; Liang H; Chen K; Geng D; Shi Q; Yang H; Li B; Chen H
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):36823-36836. PubMed ID: 32706234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model.
    Jiang G; Li S; Yu K; He B; Hong J; Xu T; Meng J; Ye C; Chen Y; Shi Z; Feng G; Chen W; Yan S; He Y; Yan R
    Acta Biomater; 2021 Jul; 128():150-162. PubMed ID: 33894346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of mesenchymal stromal cells derived from rabbit bone marrow and Wharton's jelly for adipose tissue engineering.
    Li L; Dong J; He Y; Mao W; Tang H; Dong Y; Lyu F
    Connect Tissue Res; 2020 Nov; 61(6):537-545. PubMed ID: 31185754
    [No Abstract]   [Full Text] [Related]  

  • 18. Umbilical cord Wharton's jelly repeated culture system: a new device and method for obtaining abundant mesenchymal stem cells for bone tissue engineering.
    Chang Z; Hou T; Xing J; Wu X; Jin H; Li Z; Deng M; Xie Z; Xu J
    PLoS One; 2014; 9(10):e110764. PubMed ID: 25329501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Adhesive Hydrogel Biomimetic Periosteum to Promote Critical-Size Bone Defect Repair via Synergistic Osteogenesis and Angiogenesis.
    Yang Z; Yang Z; Ding L; Zhang P; Liu C; Chen D; Zhao F; Wang G; Chen X
    ACS Appl Mater Interfaces; 2022 Aug; 14(32):36395-36410. PubMed ID: 35925784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mesenchymal Stem Cells-Hydrogel Microspheres System for Bone Regeneration in Calvarial Defects.
    Teng C; Tong Z; He Q; Zhu H; Wang L; Zhang X; Wei W
    Gels; 2022 Apr; 8(5):. PubMed ID: 35621573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.