These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36636970)

  • 1. Effects of trunk extensor muscle fatigue on repetitive lift (re)training using an augmented tactile feedback approach.
    Larson DJ; Brown SHM
    Ergonomics; 2023 Dec; 66(12):1919-1934. PubMed ID: 36636970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tactile cues can change movement: An example using tape to redistribute flexion from the lumbar spine to the hips and knees during lifting.
    Pinto BL; Beaudette SM; Brown SHM
    Hum Mov Sci; 2018 Aug; 60():32-39. PubMed ID: 29772412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of back muscle fatigue on dynamic lumbar spine stability and coordination variability of the thorax-pelvis during repetitive flexion-extension movements.
    Larson DJ; Brown SHM
    J Biomech; 2022 Mar; 133():110959. PubMed ID: 35081464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring how metronome pacing at varying movement speeds influences local dynamic stability and coordination variability of lumbar spine motion during repetitive lifting.
    Larson DJ; Summers E; Brown SHM
    Hum Mov Sci; 2024 Feb; 93():103178. PubMed ID: 38217964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue influences the dynamic stability of the torso.
    Granata KP; Gottipati P
    Ergonomics; 2008 Aug; 51(8):1258-71. PubMed ID: 18608477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repetitive lifting tasks fatigue the back muscles and increase the bending moment acting on the lumbar spine.
    Dolan P; Adams MA
    J Biomech; 1998 Aug; 31(8):713-21. PubMed ID: 9796671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of lumbar extensor muscle fatigue on lumbar-pelvic coordination during weightlifting.
    Hu B; Ning X
    Ergonomics; 2015; 58(8):1424-32. PubMed ID: 25677418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disturbance and recovery of trunk mechanical and neuromuscular behaviours following repetitive lifting: influences of flexion angle and lift rate on creep-induced effects.
    Toosizadeh N; Bazrgari B; Hendershot B; Muslim K; Nussbaum MA; Madigan ML
    Ergonomics; 2013; 56(6):954-63. PubMed ID: 23586596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of hip flexion mobility and lumbar spine extensor strength on lumbar spine flexion during a squat lift.
    Patterson CS; Lohman E; Asavasopon S; Dudley R; Gharibvand L; Powers CM
    Musculoskelet Sci Pract; 2022 Apr; 58():102501. PubMed ID: 35026497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexed lumbar spine postures are associated with greater strength and efficiency than lordotic postures during a maximal lift in pain-free individuals.
    Mawston G; Holder L; O'Sullivan P; Boocock M
    Gait Posture; 2021 May; 86():245-250. PubMed ID: 33799053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trunk stability in fatiguing frequency-dependent lifting activities.
    Chini G; Varrecchia T; Conforto S; De Nunzio AM; Draicchio F; Falla D; Ranavolo A
    Gait Posture; 2023 May; 102():72-79. PubMed ID: 36934473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the flexion-relaxation response induced by hip extensor and erector spinae muscle fatigue.
    Descarreaux M; Lafond D; Cantin V
    BMC Musculoskelet Disord; 2010 Jun; 11():112. PubMed ID: 20525336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of fatigue on multijoint kinematics and load sharing during a repetitive lifting test.
    Sparto PJ; Parnianpour M; Reinsel TE; Simon S
    Spine (Phila Pa 1976); 1997 Nov; 22(22):2647-54. PubMed ID: 9399451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of muscular fatigue on the cumulative lumbar damage during repetitive lifting task: a comparative study of damage calculation methods.
    Kazemi Z; Arjmand N; Mazloumi A; Karimi Z; Keihani A; Ghasemi MS
    Ergonomics; 2024 Apr; 67(4):566-581. PubMed ID: 37418312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interrelated hypoalgesia, creep, and muscle fatigue following a repetitive trunk flexion exposure.
    Viggiani D; Callaghan JP
    J Electromyogr Kinesiol; 2021 Apr; 57():102531. PubMed ID: 33607359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of augmented feedback and didactic training approaches to reduce spine motion during occupational lifting tasks.
    Chan VCH; Welsh TN; Tremblay L; Frost DM; Beach TAC
    Appl Ergon; 2022 Feb; 99():103612. PubMed ID: 34743974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative lumbar and pelvic motion during loaded spinal flexion/extension.
    Nelson JM; Walmsley RP; Stevenson JM
    Spine (Phila Pa 1976); 1995 Jan; 20(2):199-204. PubMed ID: 7716625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related differences do affect postural kinematics and joint kinetics during repetitive lifting.
    Boocock MG; Mawston GA; Taylor S
    Clin Biomech (Bristol); 2015 Feb; 30(2):136-43. PubMed ID: 25576019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Changes of Trunk Motion Rhythm and Spinal Loading During Trunk Flexion and Extension Motions Caused by Lumbar Muscle Fatigue.
    Hu B; Ning X
    Ann Biomed Eng; 2015 Sep; 43(9):2112-9. PubMed ID: 25589373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lumbar-pelvic coordination is influenced by lifting task parameters.
    Granata KP; Sanford AH
    Spine (Phila Pa 1976); 2000 Jun; 25(11):1413-8. PubMed ID: 10828924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.