These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36637091)
1. Influence of microbial weathering on the partitioning of per- and polyfluoroalkyl substances (PFAS) in biosolids. Lewis AJ; Ebrahimi F; McKenzie ER; Suri R; Sales CM Environ Sci Process Impacts; 2023 Mar; 25(3):415-431. PubMed ID: 36637091 [TBL] [Abstract][Full Text] [Related]
2. Simulated leaching of PFAS from land-applied municipal biosolids at agricultural sites. Silva JAK; Guelfo JL; Šimůnek J; McCray JE J Contam Hydrol; 2022 Dec; 251():104089. PubMed ID: 36223689 [TBL] [Abstract][Full Text] [Related]
3. Linking PFAS partitioning behavior in sewage solids to the solid characteristics, solution chemistry, and treatment processes. Ebrahimi F; Lewis AJ; Sales CM; Suri R; McKenzie ER Chemosphere; 2021 May; 271():129530. PubMed ID: 33482527 [TBL] [Abstract][Full Text] [Related]
4. Per- and polyfluoroalkyl substances (PFAS) in final treated solids (Biosolids) from 190 Michigan wastewater treatment plants. Link GW; Reeves DM; Cassidy DP; Coffin ES J Hazard Mater; 2024 Feb; 463():132734. PubMed ID: 37922581 [TBL] [Abstract][Full Text] [Related]
5. Impacts of Environmental and Engineered Processes on the PFAS Fingerprint of Fluorotelomer-Based AFFF. Balgooyen S; Remucal CK Environ Sci Technol; 2023 Jan; 57(1):244-254. PubMed ID: 36573898 [TBL] [Abstract][Full Text] [Related]
6. Surveillance of PFAS in sludge and biosolids at 12 water resource recovery facilities. Oza S; Bell KY; Xu Z; Wang Y; Wells MJM; Norton JW; Winchell LJ; Huang Q; Li H J Environ Qual; 2024 Jul; ():. PubMed ID: 39004957 [TBL] [Abstract][Full Text] [Related]
7. PFAS release from wastewater residuals as a function of composition and production practices. Gravesen CR; Lee LS; Choi YJ; Silveira ML; Judy JD Environ Pollut; 2023 Apr; 322():121167. PubMed ID: 36731742 [TBL] [Abstract][Full Text] [Related]
8. PFAS in soil and groundwater following historical land application of biosolids. Johnson GR Water Res; 2022 Mar; 211():118035. PubMed ID: 35032876 [TBL] [Abstract][Full Text] [Related]
9. Is PFAS from land applied municipal biosolids a significant source of human exposure via groundwater? Pepper I; Kelley C; Brusseau M Sci Total Environ; 2023 Mar; 864():161154. PubMed ID: 36572291 [TBL] [Abstract][Full Text] [Related]
10. Efficient workflow for suspect screening analysis to characterize novel and legacy per- and polyfluoroalkyl substances (PFAS) in biosolids. Dickman RA; Aga DS Anal Bioanal Chem; 2022 Jun; 414(15):4497-4507. PubMed ID: 35608671 [TBL] [Abstract][Full Text] [Related]
11. Underestimation of Per- and Polyfluoroalkyl Substances in Biosolids: Precursor Transformation During Conventional Treatment. Thompson JT; Robey NM; Tolaymat TM; Bowden JA; Solo-Gabriele HM; Townsend TG Environ Sci Technol; 2023 Mar; 57(9):3825-3832. PubMed ID: 36749308 [TBL] [Abstract][Full Text] [Related]
12. Incidence of Pfas in soil following long-term application of class B biosolids. Pepper IL; Brusseau ML; Prevatt FJ; Escobar BA Sci Total Environ; 2021 Nov; 793():148449. PubMed ID: 34174610 [TBL] [Abstract][Full Text] [Related]
13. Changing bioavailability of per- and polyfluoroalkyl substances (PFAS) to plant in biosolids amended soil through stabilization or mobilization. Zhang W; Liang Y Environ Pollut; 2022 Sep; 308():119724. PubMed ID: 35809706 [TBL] [Abstract][Full Text] [Related]
14. Non-target and target screening of per- and polyfluoroalkyl substances in landfill leachate and impact on groundwater in Guangzhou, China. Liu T; Hu LX; Han Y; Dong LL; Wang YQ; Zhao JH; Liu YS; Zhao JL; Ying GG Sci Total Environ; 2022 Oct; 844():157021. PubMed ID: 35777559 [TBL] [Abstract][Full Text] [Related]
15. Occurrence of quantifiable and semi-quantifiable poly- and perfluoroalkyl substances in united states wastewater treatment plants. Schaefer CE; Hooper JL; Strom LE; Abusallout I; Dickenson ERV; Thompson KA; Mohan GR; Drennan D; Wu K; Guelfo JL Water Res; 2023 Apr; 233():119724. PubMed ID: 36801573 [TBL] [Abstract][Full Text] [Related]
16. Comparing occurrence of per- and polyfluoroalkyl substances (PFAS) in municipal biosolids and industrial wastewater sludge: A City of Los Angeles study. Otim O Sci Total Environ; 2024 Dec; 954():176268. PubMed ID: 39278486 [TBL] [Abstract][Full Text] [Related]
17. Distribution, partitioning behavior and positive matrix factorization-based source analysis of legacy and emerging polyfluorinated alkyl substances in the dissolved phase, surface sediment and suspended particulate matter around coastal areas of Bohai Bay, China. Liu Y; Zhang Y; Li J; Wu N; Li W; Niu Z Environ Pollut; 2019 Mar; 246():34-44. PubMed ID: 30529939 [TBL] [Abstract][Full Text] [Related]
18. PFAS profiles in biosolids, composts, and chemical fertilizers intended for agricultural land application in Quebec (Canada). Saliu TD; Liu M; Habimana E; Fontaine J; Dinh QT; Sauvé S J Hazard Mater; 2024 Dec; 480():136170. PubMed ID: 39426151 [TBL] [Abstract][Full Text] [Related]
19. Fate of per- and polyfluoroalkyl substances at a 40-year dedicated municipal biosolids land disposal site. Alvarez-Ruiz R; Lee LS; Choi Y Sci Total Environ; 2024 Dec; 954():176540. PubMed ID: 39332729 [TBL] [Abstract][Full Text] [Related]
20. Release of poly- and perfluoroalkyl substances from finished biosolids in soil mesocosms. Schaefer CE; Hooper J; Modiri-Gharehveran M; Drennan DM; Beecher N; Lee L Water Res; 2022 Jun; 217():118405. PubMed ID: 35417820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]