These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 3663721)

  • 1. [Photoconformational relaxation of protein structure from the data of tryptophan fluorescence].
    Vekshin NL
    Biofizika; 1987; 32(4):588-91. PubMed ID: 3663721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Polarization of intrinsic fluorescence of proteins. III. Intramolecular submobility of tryptophan residues].
    Kuznetsova IM; Turoverov KK
    Mol Biol (Mosk); 1983; 17(4):741-54. PubMed ID: 6621523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Intrinsic luminescence of protein as a tool for studying fast structural dynamics].
    Burshteĭn EA
    Mol Biol (Mosk); 1983; 17(3):455-67. PubMed ID: 6877227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophan luminescence as a probe of enzyme conformation along the O-acetylserine sulfhydrylase reaction pathway.
    Strambini GB; Cioni P; Cook PF
    Biochemistry; 1996 Jun; 35(25):8392-400. PubMed ID: 8679597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Polarization of intrinsic fluorescence of proteins. II. Application for the study of equilibrium dynamics of tryptophan residues].
    Turoverov KK; Kuznetsova IM
    Mol Biol (Mosk); 1983; 17(3):468-74. PubMed ID: 6877228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the tryptophan fluorescence and hydrodynamic properties of rat DNA polymerase beta.
    Kim SJ; Lewis MS; Knutson JR; Porter DK; Kumar A; Wilson SH
    J Mol Biol; 1994 Nov; 244(2):224-35. PubMed ID: 7966332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure effects on protein flexibility monomeric proteins.
    Cioni P; Strambini GB
    J Mol Biol; 1994 Sep; 242(3):291-301. PubMed ID: 8089848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Intrinsic UV-fluorescence of proteins as a tool for studying their dynamics].
    Turoverov KK; Kuznetsova IM
    Tsitologiia; 1998; 40(8-9):735-46. PubMed ID: 9821244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer.
    Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP
    Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wavelength-resolved fluorescence emission of proteins using the synchrotron radiation as pulsed-light source: cross-correlations between lifetimes, rotational correlation times and tryptophan heterogeneity in FKBP59 immunophilin.
    Vincent M; Rouvière N; Gallay J
    Cell Mol Biol (Noisy-le-grand); 2000 Sep; 46(6):1113-31. PubMed ID: 10976868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-fluorescence correlations in a single tryptophan mutant of carp parvalbumin: solution structure, backbone and side-chain dynamics.
    Moncrieffe MC; Juranic N; Kemple MD; Potter JD; Macura S; Prendergast FG
    J Mol Biol; 2000 Mar; 297(1):147-63. PubMed ID: 10704313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [What determines the characteristics of the intrinsic UV-fluorescence of proteins? Analysis of the properties of the microenvironment and features of the localization of their tryptophan residues].
    Kuznetsova IM; Turoverov KK
    Tsitologiia; 1998; 40(8-9):747-62. PubMed ID: 9821245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational dynamics of DnaB helicase upon DNA and nucleotide binding: analysis by intrinsic tryptophan fluorescence quenching.
    Flowers S; Biswas EE; Biswas SB
    Biochemistry; 2003 Feb; 42(7):1910-21. PubMed ID: 12590577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study of the equilibrium dynamics of cell protein structure using the tryptophan fluorescence method at room temperature].
    Mazhul' VM; Konev SV; Ermolaev IuS; Martynova MA; Nikol'skaia VP
    Biofizika; 1983; 28(6):980-4. PubMed ID: 6652136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of NAD+ binding on the luminescence of tryptophans 84 and 310 of glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus.
    Gabellieri E; Rahuel-Clermont S; Branlant G; Strambini GB
    Biochemistry; 1996 Sep; 35(38):12549-59. PubMed ID: 8823192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A study of nonlinear fraction frequency fluorescence spectra for tryptophane].
    Wang LS; Peng ZL; Jiang ZL; Liu SP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Aug; 22(4):641-4. PubMed ID: 12938386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of tryptophan in the histidine-containing phosphocarrier protein of Streptomyces coelicolor: evidence of multistate equilibrium unfolding.
    Poveda JA; Fernández-Ballester G; Prieto M; Neira JL
    Biochemistry; 2007 Jun; 46(24):7252-60. PubMed ID: 17516658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational flexibility of domain III of annexin V at membrane/water interfaces.
    Sopkova J; Vincent M; Takahashi M; Lewit-Bentley A; Gallay J
    Biochemistry; 1999 Apr; 38(17):5447-58. PubMed ID: 10220332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the microenvironment of sol-gel entrapped cutinase: the role of added zeolite NaY.
    Vidinha P; Augusto V; Nunes J; Lima JC; Cabral JM; Barreiros S
    J Biotechnol; 2008 Jun; 135(2):181-9. PubMed ID: 18490069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A close look at fluorescence quenching of organic dyes by tryptophan.
    Doose S; Neuweiler H; Sauer M
    Chemphyschem; 2005 Nov; 6(11):2277-85. PubMed ID: 16224752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.