These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Alisol A 24-Acetate Prevents Hepatic Steatosis and Metabolic Disorders in HepG2 Cells. Zeng L; Tang W; Yin J; Feng L; Li Y; Yao X; Zhou B Cell Physiol Biochem; 2016; 40(3-4):453-464. PubMed ID: 27889747 [TBL] [Abstract][Full Text] [Related]
6. Monascin and ankaflavin act as natural AMPK activators with PPARα agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice. Hsu WH; Chen TH; Lee BH; Hsu YW; Pan TM Food Chem Toxicol; 2014 Feb; 64():94-103. PubMed ID: 24275089 [TBL] [Abstract][Full Text] [Related]
7. Diosgenin attenuates nonalcoholic hepatic steatosis through the hepatic SIRT1/PGC-1α pathway. Meng D; Yin G; Chen S; Zhang X; Yu W; Wang L; Liu H; Jiang W; Sun Y; Zhang F Eur J Pharmacol; 2024 Aug; 977():176737. PubMed ID: 38866362 [TBL] [Abstract][Full Text] [Related]
8. Rutin exhibits hepatoprotective effects in a mouse model of non-alcoholic fatty liver disease by reducing hepatic lipid levels and mitigating lipid-induced oxidative injuries. Liu Q; Pan R; Ding L; Zhang F; Hu L; Ding B; Zhu L; Xia Y; Dou X Int Immunopharmacol; 2017 Aug; 49():132-141. PubMed ID: 28577437 [TBL] [Abstract][Full Text] [Related]
9. Tandem mass tag-based quantitative proteomics analysis reveals the effects of the α-lactalbumin peptides GINY and DQW on lipid deposition and oxidative stress in HepG2 cells. Chen H; Qi X; Guan K; Wang R; Li Q; Ma Y J Dairy Sci; 2023 Apr; 106(4):2271-2288. PubMed ID: 36797178 [TBL] [Abstract][Full Text] [Related]
12. Li-Gan-Shi-Liu-Ba-Wei-San improves non-alcoholic fatty liver disease through enhancing lipid oxidation and alleviating oxidation stress. Jiang Y; Chen L; Wang H; Narisi B; Chen B J Ethnopharmacol; 2015 Dec; 176():499-507. PubMed ID: 26571089 [TBL] [Abstract][Full Text] [Related]
13. Elucidation of SIRT-1/PGC-1α-associated mitochondrial dysfunction and autophagy in nonalcoholic fatty liver disease. Jiang Y; Chen D; Gong Q; Xu Q; Pan D; Lu F; Tang Q Lipids Health Dis; 2021 Apr; 20(1):40. PubMed ID: 33902605 [TBL] [Abstract][Full Text] [Related]
14. Effects of Mun J; Park J; Yoon HG; You Y; Choi KC; Lee YH; Kim K; Lee J; Kim OK; Jun W J Med Food; 2019 Dec; 22(12):1262-1270. PubMed ID: 31834842 [TBL] [Abstract][Full Text] [Related]
15. Palmitate-induced Regulation of PPARγ via PGC1α: a Mechanism for Lipid Accumulation in the Liver in Nonalcoholic Fatty Liver Disease. Maruyama H; Kiyono S; Kondo T; Sekimoto T; Yokosuka O Int J Med Sci; 2016; 13(3):169-78. PubMed ID: 26941577 [TBL] [Abstract][Full Text] [Related]
17. Tumor necrosis factor and interleukin 1 decrease RXRalpha, PPARalpha, PPARgamma, LXRalpha, and the coactivators SRC-1, PGC-1alpha, and PGC-1beta in liver cells. Kim MS; Sweeney TR; Shigenaga JK; Chui LG; Moser A; Grunfeld C; Feingold KR Metabolism; 2007 Feb; 56(2):267-79. PubMed ID: 17224343 [TBL] [Abstract][Full Text] [Related]
18. Differential Lipotoxic Effects of Palmitate and Oleate in Activated Human Hepatic Stellate Cells and Epithelial Hepatoma Cells. Hetherington AM; Sawyez CG; Zilberman E; Stoianov AM; Robson DL; Borradaile NM Cell Physiol Biochem; 2016; 39(4):1648-62. PubMed ID: 27626926 [TBL] [Abstract][Full Text] [Related]
19. Scutellarin ameliorates nonalcoholic fatty liver disease through the PPARγ/PGC-1α-Nrf2 pathway. Zhang X; Ji R; Sun H; Peng J; Ma X; Wang C; Fu Y; Bao L; Jin Y Free Radic Res; 2018 Feb; 52(2):198-211. PubMed ID: 29400110 [TBL] [Abstract][Full Text] [Related]
20. P2Y2R Deficiency Ameliorates Hepatic Steatosis by Reducing Lipogenesis and Enhancing Fatty Acid β-Oxidation through AMPK and PGC-1α Induction in High-Fat Diet-Fed Mice. Dusabimana T; Park EJ; Je J; Jeong K; Yun SP; Kim HJ; Kim H; Park SW Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]