These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36637542)

  • 1. Concentration-Dependent Domain Evolution in Reaction-Diffusion Systems.
    Krause AL; Gaffney EA; Walker BJ
    Bull Math Biol; 2023 Jan; 85(2):14. PubMed ID: 36637542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Curvature, Growth, and Anisotropy on the Evolution of Turing Patterns on Growing Manifolds.
    Krause AL; Ellis MA; Van Gorder RA
    Bull Math Biol; 2019 Mar; 81(3):759-799. PubMed ID: 30511207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient, nonlinear stability analysis for detecting pattern formation in reaction diffusion systems.
    Holmes WR
    Bull Math Biol; 2014 Jan; 76(1):157-83. PubMed ID: 24158538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turing conditions for pattern forming systems on evolving manifolds.
    Van Gorder RA; Klika V; Krause AL
    J Math Biol; 2021 Jan; 82(1-2):4. PubMed ID: 33475826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian Parameter Identification for Turing Systems on Stationary and Evolving Domains.
    Campillo-Funollet E; Venkataraman C; Madzvamuse A
    Bull Math Biol; 2019 Jan; 81(1):81-104. PubMed ID: 30311137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern formation in multiphase models of chemotactic cell aggregation.
    Green JEF; Whiteley JP; Oliver JM; Byrne HM; Waters SL
    Math Med Biol; 2018 Sep; 35(3):319-346. PubMed ID: 28520976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turing Patterning in Stratified Domains.
    Krause AL; Klika V; Halatek J; Grant PK; Woolley TE; Dalchau N; Gaffney EA
    Bull Math Biol; 2020 Oct; 82(10):136. PubMed ID: 33057872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turing Instabilities are Not Enough to Ensure Pattern Formation.
    Krause AL; Gaffney EA; Jewell TJ; Klika V; Walker BJ
    Bull Math Biol; 2024 Jan; 86(2):21. PubMed ID: 38253936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.
    Brunton SL; Brunton BW; Proctor JL; Kutz JN
    PLoS One; 2016; 11(2):e0150171. PubMed ID: 26919740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fixed and Distributed Gene Expression Time Delays in Reaction-Diffusion Systems.
    Sargood A; Gaffney EA; Krause AL
    Bull Math Biol; 2022 Aug; 84(9):98. PubMed ID: 35934760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turing patterns in a predator-prey model with seasonality.
    Wang X; Lutscher F
    J Math Biol; 2019 Feb; 78(3):711-737. PubMed ID: 30155778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis.
    Maybank PJ; Whiteley JP
    Math Biosci; 2014 Feb; 248():146-57. PubMed ID: 24418010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-dimensional patterns in bacterial veils arise from self-generated, three-dimensional fluid flows.
    Cogan NG; Wolgemuth CW
    Bull Math Biol; 2011 Jan; 73(1):212-29. PubMed ID: 20376573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolating Patterns in Open Reaction-Diffusion Systems.
    Krause AL; Klika V; Maini PK; Headon D; Gaffney EA
    Bull Math Biol; 2021 Jun; 83(7):82. PubMed ID: 34089093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling Population Dynamics in Realistic Landscapes with Linear Elements: A Mechanistic-Statistical Reaction-Diffusion Approach.
    Roques L; Bonnefon O
    PLoS One; 2016; 11(3):e0151217. PubMed ID: 26986201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turing-Hopf patterns on growing domains: The torus and the sphere.
    Sánchez-Garduño F; Krause AL; Castillo JA; Padilla P
    J Theor Biol; 2019 Nov; 481():136-150. PubMed ID: 30266461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-buckling behaviour of a growing elastic rod.
    Almet AA; Byrne HM; Maini PK; Moulton DE
    J Math Biol; 2019 Feb; 78(3):777-814. PubMed ID: 30206650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of diffusion on the stability of equilibria in a reaction-diffusion system modeling cholera dynamic.
    Capone F; De Cataldis V; De Luca R
    J Math Biol; 2015 Nov; 71(5):1107-31. PubMed ID: 25424418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern formation in reaction-diffusion models with nonuniform domain growth.
    Crampin EJ; Hackborn WW; Maini PK
    Bull Math Biol; 2002 Jul; 64(4):747-69. PubMed ID: 12216419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.