These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 36637679)

  • 1. Design and simulation of type-I graphene/Si quantum dot superlattice for intermediate-band solar cell applications.
    Sarkhoush M; Rasooli Saghai H; Soofi H
    Front Optoelectron; 2022 Oct; 15(1):42. PubMed ID: 36637679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of power conversion efficiency by a stepwise band-gap structure for silicon quantum dot solar cells.
    Kwak GY; Kim TG; Kim N; Shin JY; Kim KJ
    Nanotechnology; 2020 May; 31(19):195404. PubMed ID: 31986507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance optimization of In(Ga)As quantum dot intermediate band solar cells.
    Yang G; Liu W; Bao Y; Chen X; Ji C; Wei B; Yang F; Wang X
    Discov Nano; 2023 Apr; 18(1):67. PubMed ID: 37382764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon quantum dot/crystalline silicon solar cells.
    Cho EC; Park S; Hao X; Song D; Conibeer G; Park SC; Green MA
    Nanotechnology; 2008 Jun; 19(24):245201. PubMed ID: 21825804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of Electronic Structures and Phonon Dynamics in Quantum Dot Superlattices by Manipulation of Interior Nanospace.
    Chang IY; Kim D; Hyeon-Deuk K
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):18321-7. PubMed ID: 27385641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient light harvesting in hybrid quantum dot-interdigitated back contact solar cells via resonant energy transfer and luminescent downshifting.
    Krishnan C; Mercier T; Rahman T; Piana G; Brossard M; Yagafarov T; To A; Pollard ME; Shaw P; Bagnall DM; Hoex B; Boden SA; Lagoudakis PG; Charlton MDB
    Nanoscale; 2019 Oct; 11(40):18837-18844. PubMed ID: 31595913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers.
    Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional imaging for precise structural control of Si quantum dot networks for all-Si solar cells.
    Kourkoutis LF; Hao X; Huang S; Puthen-Veettil B; Conibeer G; Green MA; Perez-Wurfl I
    Nanoscale; 2013 Aug; 5(16):7499-504. PubMed ID: 23832085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Geometrical Shape on the Characteristics of the Multiple InN/In
    Aouami AE; Pérez LM; Feddi K; El-Yadri M; Dujardin F; Suazo MJ; Laroze D; Courel M; Feddi EM
    Nanomaterials (Basel); 2021 May; 11(5):. PubMed ID: 34067706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MoS
    Najafi L; Taheri B; Martín-García B; Bellani S; Di Girolamo D; Agresti A; Oropesa-Nuñez R; Pescetelli S; Vesce L; Calabrò E; Prato M; Del Rio Castillo AE; Di Carlo A; Bonaccorso F
    ACS Nano; 2018 Nov; 12(11):10736-10754. PubMed ID: 30240189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-high density Si quantum dot thin film utilizing a gradient Si-rich oxide multilayer structure.
    Kuo KY; Huang PR; Lee PT
    Nanotechnology; 2013 May; 24(19):195701. PubMed ID: 23579196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Realistic quantum design of silicon quantum dot intermediate band solar cells.
    Hu W; Igarashi M; Lee MY; Li Y; Samukawa S
    Nanotechnology; 2013 Jul; 24(26):265401. PubMed ID: 23733263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical and electrical characteristics of Si/SiC quantum dot superlattice solar cells with passivation layer of aluminum oxide.
    Tsai YC; Li Y; Samukawa S
    Nanotechnology; 2017 Dec; 28(48):485401. PubMed ID: 28976353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of growth temperature and quantum structure on InAs/GaAs quantum dot solar cell.
    Park MH; Kim HS; Park SJ; Song JD; Kim SH; Lee YJ; Choi WJ; Park JH
    J Nanosci Nanotechnol; 2014 Apr; 14(4):2955-9. PubMed ID: 24734716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of plasmonic quantum-dot-based intermediate band solar cells.
    Foroutan S; Baghban H
    Appl Opt; 2016 May; 55(13):3405-12. PubMed ID: 27140348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Si solid-state quantum dot-based materials for tandem solar cells.
    Conibeer G; Perez-Wurfl I; Hao X; Di D; Lin D
    Nanoscale Res Lett; 2012 Mar; 7(1):193. PubMed ID: 22436303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bayesian optimization of hydrogen plasma treatment in silicon quantum dot multilayer and application to solar cells.
    Kumagai F; Gotoh K; Miyamoto S; Kato S; Kutsukake K; Usami N; Kurokawa Y
    Discov Nano; 2023 Mar; 18(1):43. PubMed ID: 37382685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High efficiency Si quantum dot heterojunction solar cells using a single SiO
    Kim TG; Kwak GY; Do K; Kim KJ
    Nanotechnology; 2019 Aug; 30(32):325404. PubMed ID: 30952144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic Coupling in π-Conjugated Molecule-Bridged Silicon Quantum Dot Clusters Synthesized by Sonogashira Cross-Coupling Reaction.
    Le TH; Choi YH; Kim KJ; Jeong HD
    ACS Omega; 2019 Feb; 4(2):3133-3145. PubMed ID: 31459531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells.
    Sun Z; Sitbon G; Pons T; Bakulin AA; Chen Z
    Sci Rep; 2015 May; 5():10626. PubMed ID: 26024021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.