These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36637761)

  • 1. Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide.
    Lou Y; Ning X; Wu B; Pang Y
    Front Optoelectron; 2021 Dec; 14(4):399-406. PubMed ID: 36637761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures.
    Saleh AA; Dionne JA
    Nano Lett; 2012 Nov; 12(11):5581-6. PubMed ID: 23035765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-optical trapping using an all-dielectric optical fiber supporting a TEM-like mode.
    Lou Y; Wan X; Pang Y
    Nanotechnology; 2021 Nov; 33(4):. PubMed ID: 34530419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.
    Saleh AA; Sheikhoelislami S; Gastelum S; Dionne JA
    Opt Express; 2016 Sep; 24(18):20593-603. PubMed ID: 27607663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures.
    Bouloumis TD; Kotsifaki DG; Han X; Chormaic SN; Truong VG
    Nanotechnology; 2021 Jan; 32(2):025507. PubMed ID: 32992307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stand-alone optical spinning tweezers with tunable rotation frequency.
    Hameed N; Zeghdoudi T; Guichardaz B; Mezeghrane A; Suarez M; Courjal N; Bernal MP; Belkhir A; Baida FI
    Opt Express; 2023 Jan; 31(3):4379-4392. PubMed ID: 36785408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-chip optical trapping of extracellular vesicles using box-shaped composite SiO
    Loozen GB; Caro J
    Opt Express; 2018 Oct; 26(21):26985-27000. PubMed ID: 30469775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap.
    Yoo D; Gurunatha KL; Choi HK; Mohr DA; Ertsgaard CT; Gordon R; Oh SH
    Nano Lett; 2018 Jun; 18(6):3637-3642. PubMed ID: 29763566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical tweezing using tunable optical lattices along a few-mode silicon waveguide.
    Pin C; Jager JB; Tardif M; Picard E; Hadji E; de Fornel F; Cluzel B
    Lab Chip; 2018 Jun; 18(12):1750-1757. PubMed ID: 29774333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the substrate contribution to the back action trapping of plasmonic nanoparticles on resonant near-field traps in plasmonic films.
    Padhy P; Zaman MA; Hansen P; Hesselink L
    Opt Express; 2017 Oct; 25(21):26198-26214. PubMed ID: 29041280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TEM-like optical mode of a coaxial nanowaveguide.
    Peng Y; Wang X; Kempa K
    Opt Express; 2008 Feb; 16(3):1758-63. PubMed ID: 18542255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimisation and scaling effect of dual-waveguide optical trapping in the SOI platform.
    Xu X; Thomson DJ; Yan J
    Opt Express; 2020 Oct; 28(22):33285-33297. PubMed ID: 33114996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocompatible and High Stiffness Nanophotonic Trap Array for Precise and Versatile Manipulation.
    Ye F; Badman RP; Inman JT; Soltani M; Killian JL; Wang MD
    Nano Lett; 2016 Oct; 16(10):6661-6667. PubMed ID: 27689302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of Multimode-Single Mode Polymer Fiber Tweezers for Single Cell Trapping and Identification with Improved Performance.
    Rodrigues SM; Paiva JS; Ribeiro RSR; Soppera O; Cunha JPS; Jorge PAS
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30134569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-induced backaction in optical waveguides.
    Abbassi MA; Mehrany K
    Opt Express; 2022 Nov; 30(24):42967-42981. PubMed ID: 36523006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical trapping force combining an optical fiber probe and an AFM metallic probe.
    Liu B; Yang L; Wang Y
    Opt Express; 2011 Feb; 19(4):3703-14. PubMed ID: 21369196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evanescent field trapping of nanoparticles using nanostructured ultrathin optical fibers.
    Daly M; Truong VG; Chormaic SN
    Opt Express; 2016 Jun; 24(13):14470-82. PubMed ID: 27410600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total longitudinal momentum in a dispersive optical waveguide.
    Yu J; Chen C; Zhai Y; Chen Z; Zhang J; Wu L; Huang F; Xiao Y
    Opt Express; 2011 Dec; 19(25):25263-78. PubMed ID: 22273917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.