These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36637761)

  • 21. Stable, Free-space Optical Trapping and Manipulation of Sub-micron Particles in an Integrated Microfluidic Chip.
    Kim J; Shin JH
    Sci Rep; 2016 Sep; 6():33842. PubMed ID: 27653191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generation of radially-polarized terahertz pulses for coupling into coaxial waveguides.
    Navarro-Cía M; Wu J; Liu H; Mitrofanov O
    Sci Rep; 2016 Dec; 6():38926. PubMed ID: 27941845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrated photonics multi-waveguide devices for optical trapping and Raman spectroscopy: design, fabrication and performance demonstration.
    Loozen GB; Karuna A; Fanood MMR; Schreuder E; Caro J
    Beilstein J Nanotechnol; 2020; 11():829-842. PubMed ID: 32551208
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controllable trapping and releasing of nanoparticles by a standing wave on optical waveguides.
    An R; Wang G; Ji W; Jiao W; Jiang M; Chang Y; Xu X; Zou N; Zhang X
    Opt Lett; 2018 Aug; 43(16):3901-3904. PubMed ID: 30106912
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced optical transmission by light coaxing: mechanism of the TEM-mode excitation.
    Baida FI; Belkhir A; Arar O; Barakat EH; Dahdah J; Chemrouk C; Van Labeke D; Diebold C; Perry N; Bernal MP
    Micron; 2010 Oct; 41(7):742-5. PubMed ID: 20630768
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical Trapping and Manipulating with a Silica Microring Resonator in a Self-Locked Scheme.
    Ho VWL; Chang Y; Liu Y; Zhang C; Li Y; Davidson RR; Little BE; Wang G; Chu ST
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32075346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides.
    Papes M; Cheben P; Benedikovic D; Schmid JH; Pond J; Halir R; Ortega-Moñux A; Wangüemert-Pérez G; Ye WN; Xu DX; Janz S; Dado M; Vašinek V
    Opt Express; 2016 Mar; 24(5):5026-5038. PubMed ID: 29092331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trapping forces in a multiple-beam fiber-optic trap.
    Sidick E; Collins SD; Knoesen A
    Appl Opt; 1997 Sep; 36(25):6423-33. PubMed ID: 18259500
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trapping of Micro Particles in Nanoplasmonic Optical Lattice.
    Bhalothia D; Yang YT
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28931000
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gear-like rotatable optical trapping with radial carpet beams.
    Bayat J; Hajizadeh F; Khazaei AM; Rasouli S
    Sci Rep; 2020 Jul; 10(1):11721. PubMed ID: 32678205
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Creating Multifunctional Optofluidic Potential Wells for Nanoparticle Manipulation.
    Nan F; Yan Z
    Nano Lett; 2018 Nov; 18(11):7400-7406. PubMed ID: 30351963
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface transport and stable trapping of particles and cells by an optical waveguide loop.
    Hellesø OG; Løvhaugen P; Subramanian AZ; Wilkinson JS; Ahluwalia BS
    Lab Chip; 2012 Sep; 12(18):3436-40. PubMed ID: 22814473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fresnel lens three-dimensionally printed on the facet of a single mode fiber for trapping, manipulation, and spectrum.
    Wang Y; Li M; Zhu H; Min Q; Lou Y; Wu D; Ma J; Yang Z; Zhao M; Pang Y
    Opt Lett; 2024 Jun; 49(11):3259-3262. PubMed ID: 38824378
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas.
    Kang JH; Kim K; Ee HS; Lee YH; Yoon TY; Seo MK; Park HG
    Nat Commun; 2011 Dec; 2():582. PubMed ID: 22158437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoscale observation of waveguide modes enhancing the efficiency of solar cells.
    Paetzold UW; Lehnen S; Bittkau K; Rau U; Carius R
    Nano Lett; 2014 Nov; 14(11):6599-605. PubMed ID: 25350265
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extraordinary transmission through a single coaxial aperture in a thin metal film.
    Banzer P; Kindler J; Quabis S; Peschel U; Leuchs G
    Opt Express; 2010 May; 18(10):10896-904. PubMed ID: 20588945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unidirectional sub-diffraction waveguiding based on optical spin-orbit coupling in subwavelength plasmonic waveguides.
    Lefier Y; Grosjean T
    Opt Lett; 2015 Jun; 40(12):2890-3. PubMed ID: 26076288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High Trap Stiffness Microcylinders for Nanophotonic Trapping.
    Badman RP; Ye F; Caravan W; Wang MD
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25074-25080. PubMed ID: 31274286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sub-10  nm particle trapping enabled by a plasmonic dark mode.
    Xiao F; Ren Y; Shang W; Zhu W; Han L; Lu H; Mei T; Premaratne M; Zhao J
    Opt Lett; 2018 Jul; 43(14):3413-3416. PubMed ID: 30004530
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple traps created with an inclined dual-fiber system.
    Liu Y; Yu M
    Opt Express; 2009 Nov; 17(24):21680-90. PubMed ID: 19997409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.