BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 3663810)

  • 21. Enzymatic degradation of poly(L-lactide) and poly(epsilon-caprolactone) electrospun fibers.
    Zeng J; Chen X; Liang Q; Xu X; Jing X
    Macromol Biosci; 2004 Dec; 4(12):1118-25. PubMed ID: 15586389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Internal fixation for zygomatic arch fracture with super-high molecular weight poly D, L-lactic acid mini-plates and screws: a study in dogs].
    Wei S; Zheng Q; Zhao Z; Liu L; Li S; Wang H; Xiong C; Deng X; Luo F; Luo C
    Hua Xi Kou Qiang Yi Xue Za Zhi; 1999 Feb; 17(1):63-5. PubMed ID: 12539327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of poly-L-lactide. Part 2: increased temperature accelerated degradation.
    Weir NA; Buchanan FJ; Orr JF; Farrar DF; Dickson GR
    Proc Inst Mech Eng H; 2004; 218(5):321-30. PubMed ID: 15532997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of resorbable poly(L-lactide) bone plates and screws on the dose distributions of radiotherapy beams.
    Rozema FR; Levendag PC; Bos RR; Boering G; Pennings AJ
    Int J Oral Maxillofac Surg; 1990 Dec; 19(6):374-6. PubMed ID: 2128317
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydroxyapatite/poly-L-lactide acid screws have better biocompatibility and femoral burr hole closure than does poly-L-lactide acid alone.
    Akagi H; Iwata M; Ichinohe T; Amimoto H; Hayashi Y; Kannno N; Ochi H; Fujita Y; Harada Y; Tagawa M; Hara Y
    J Biomater Appl; 2014 Feb; 28(6):954-62. PubMed ID: 23680818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo study on the histocompatibility and degradation behavior of biodegradable poly(trimethylene carbonate-co-D,L-lactide).
    Guo Q; Lu Z; Zhang Y; Li S; Yang J
    Acta Biochim Biophys Sin (Shanghai); 2011 Jun; 43(6):433-40. PubMed ID: 21571741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation.
    Wang Z; Wang Y; Ito Y; Zhang P; Chen X
    Sci Rep; 2016 Feb; 6():20770. PubMed ID: 26857951
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Macromolecular design of aliphatic polyesters with maintained mechanical properties and a rapid, customized degradation profile.
    Malberg S; Hoglund A; Albertsson AC
    Biomacromolecules; 2011 Jun; 12(6):2382-8. PubMed ID: 21528876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Foreign body reactions to resorbable poly(L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures.
    Bergsma EJ; Rozema FR; Bos RR; de Bruijn WC
    J Oral Maxillofac Surg; 1993 Jun; 51(6):666-70. PubMed ID: 8492205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Bioabsorbable poly(L-lactide) osteosynthesis plates and screws for the fixation of zygomatic bone fractures].
    Bos RR; Rozema FR; Boering G; Leenslag JW; Verwey AB; Pennings AJ
    Dtsch Z Mund Kiefer Gesichtschir; 1989; 13(6):422-4. PubMed ID: 2639741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [In vivo study of degradation of poly-(D,L-) lactide and poly-(L-lactide-co-glycolide) osteosynthesis material].
    Heidemann W; Fischer JH; Koebke J; Bussmann C; Gerlach KL
    Mund Kiefer Gesichtschir; 2003 Sep; 7(5):283-8. PubMed ID: 14551804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical evaluation of titanium, biodegradable plate and screw, and cyanoacrylate glue fixation systems in craniofacial surgery.
    Gosain AK; Song L; Corrao MA; Pintar FA
    Plast Reconstr Surg; 1998 Mar; 101(3):582-91. PubMed ID: 9500375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of heat treatment of poly(L-lactide) on the response of osteoblast-like MC3T3-E1 cells.
    Ikarashi Y; Tsuchiya T; Nakamura A
    Biomaterials; 2000 Jun; 21(12):1259-67. PubMed ID: 10811307
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biodegradable films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer: modulation of phase morphology, plasticization properties and thermal depolymerization.
    Broström J; Boss A; Chronakis IS
    Biomacromolecules; 2004; 5(3):1124-34. PubMed ID: 15132708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation behavior of composite pins made of tricalcium phosphate and poly(L,DL-lactide).
    Ignatius AA; Augat P; Claes LE
    J Biomater Sci Polym Ed; 2001; 12(2):185-94. PubMed ID: 11403235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The long-term behavior of poly-L-lactide screws in a minipig fracture model: preliminary report.
    Hasegawa Y; Sakano S; Iwase T; Warashina H
    J Biomed Mater Res; 2002; 63(6):679-85. PubMed ID: 12418010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poly(L-lactide)-b-poly(ethylene oxide) copolymers with different arms: hydrophilicity, biodegradable nanoparticles, in vitro degradation, and drug-release behavior.
    Liu Q; Cai C; Dong CM
    J Biomed Mater Res A; 2009 Mar; 88(4):990-9. PubMed ID: 18384173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Degradation, intra-articular retention and biocompatibility of monospheres composed of [PDLLA-PEG-PDLLA]-b-PLLA multi-block copolymers.
    Sandker MJ; Duque LF; Redout EM; Chan A; Que I; Löwik CWGM; Klijnstra EC; Kops N; Steendam R; van Weeren R; Hennink WE; Weinans H
    Acta Biomater; 2017 Jan; 48():401-414. PubMed ID: 27816621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation properties of chitosan microspheres/poly(L-lactic acid) composite in vitro and in vivo.
    Guo Z; Bo D; He Y; Luo X; Li H
    Carbohydr Polym; 2018 Aug; 193():1-8. PubMed ID: 29773361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradable polyesters as crystallization-accelerating agents of poly(l-lactide).
    Tsuji H; Sawada M; Bouapao L
    ACS Appl Mater Interfaces; 2009 Aug; 1(8):1719-30. PubMed ID: 20355788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.